IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipas0360544221019320.html
   My bibliography  Save this article

State-of-the-art assessment of natural gas liquids recovery processes: Techno-economic evaluation, policy implications, open issues, and the way forward

Author

Listed:
  • Qyyum, Muhammad Abdul
  • Naquash, Ahmad
  • Haider, Junaid
  • Al-Sobhi, Saad A.
  • Lee, Moonyong

Abstract

Although many improved conceptual designs of natural gas liquids (NGLs) recovery processes have been introduced to enhance the economics and efficiency, real-world applications remain elusive because of the communication gap between researchers and practitioners. To bridge this gap, a state-of-the-art assessment of the NGLs recovery processes is presented along with an overall outline considering the feed conditions, product recovery, purity, specific energy consumption (SEC), process economics, and analysis software using the equation of state model. Lower NGL components in the feed have a higher SEC and lower operating costs than a rich feed. It was also found that the conceptual processes are more energy intensive and complex than commercial processes. The major challenges associated with NGL recovery were assessed, including a high energy consumption, varying feed composition, flexibility in the product recovery, and design considerations for offshore NGL processing. Future directions are proposed, including the application of hybrid separation processes and a process intensification to enhance the compactness, particularly for offshore applications, process optimization, and heat integration. Further, an economic policy study is conducted that provides insight into market dynamics. The development of new natural gas (NG) reserves will boost the NGL market and NG business.

Suggested Citation

  • Qyyum, Muhammad Abdul & Naquash, Ahmad & Haider, Junaid & Al-Sobhi, Saad A. & Lee, Moonyong, 2022. "State-of-the-art assessment of natural gas liquids recovery processes: Techno-economic evaluation, policy implications, open issues, and the way forward," Energy, Elsevier, vol. 238(PA).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019320
    DOI: 10.1016/j.energy.2021.121684
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221019320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoon, Sekwang & Binns, Michael & Park, Sangmin & Kim, Jin-Kuk, 2017. "Development of energy-efficient processes for natural gas liquids recovery," Energy, Elsevier, vol. 128(C), pages 768-775.
    2. David T. Allen & Felipe J. Cardoso‐Saldaña & Gary McGaughey & Elena McDonald‐Buller & Mort Webster, 2018. "Uses for expanded production of natural gas liquids: chemicals or power?," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(1), January.
    3. Qyyum, Muhammad Abdul & Qadeer, Kinza & Minh, Le Quang & Haider, Junaid & Lee, Moonyong, 2019. "Nitrogen self-recuperation expansion-based process for offshore coproduction of liquefied natural gas, liquefied petroleum gas, and pentane plus," Applied Energy, Elsevier, vol. 235(C), pages 247-257.
    4. Ehsan Barekat-Rezaei & Mahmood Farzaneh-Gord & Alireza Arjomand & Mohsen Jannatabadi & Mohammad Hossein Ahmadi & Wei-Mon Yan, 2018. "Thermo–Economical Evaluation of Producing Liquefied Natural Gas and Natural Gas Liquids from Flare Gases," Energies, MDPI, vol. 11(7), pages 1-17, July.
    5. Fahmy, M.F.M. & Nabih, H.I. & El-Rasoul, T.A., 2015. "Optimization and comparative analysis of LNG regasification processes," Energy, Elsevier, vol. 91(C), pages 371-385.
    6. Eric Johnson, 2019. "Process Technologies and Projects for BioLPG," Energies, MDPI, vol. 12(2), pages 1-29, January.
    7. Kim, Donghoi & Gundersen, Truls, 2020. "Use of exergy efficiency for the optimization of LNG processes with NGL extraction," Energy, Elsevier, vol. 197(C).
    8. Van Duc Long, Nguyen & Lee, Moonyong, 2013. "A novel NGL (natural gas liquid) recovery process based on self-heat recuperation," Energy, Elsevier, vol. 57(C), pages 663-670.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongyang Chu & Tianbi Ma & Zhen Chen & Wenchao Liu & Yubao Gao, 2022. "Well Testing Methodology for Multiple Vertical Wells with Well Interference and Radially Composite Structure during Underground Gas Storage," Energies, MDPI, vol. 15(22), pages 1-20, November.
    2. Zhang, Ruihang & Wang, Zexin & Wei, Xiaoming & Peng, Xiaowan & Chen, Wan & Deng, Chun & Liu, Bei & Sun, Changyu & Chen, Guangjin, 2023. "Modelling and optimization of ethane recovery process from natural gas via ZIF-8/water-glycol slurry with low energy consumption," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uwitonze, Hosanna & Chaniago, Yus Donald & Lim, Hankwon, 2022. "Novel integrated energy-efficient dual-effect single mixed refrigerant and NGLs recovery process for small-scale natural gas processing plant," Energy, Elsevier, vol. 254(PA).
    2. Dara, Satyadileep & Abdulqader, Haytham & Al Wahedi, Yasser & Berrouk, Abdallah S., 2020. "Countrywide optimization of natural gas supply chain: From wells to consumers," Energy, Elsevier, vol. 196(C).
    3. Qyyum, Muhammad Abdul & Duong, Pham Luu Trung & Minh, Le Quang & Lee, Sanggyu & Lee, Moonyong, 2019. "Dual mixed refrigerant LNG process: Uncertainty quantification and dimensional reduction sensitivity analysis," Applied Energy, Elsevier, vol. 250(C), pages 1446-1456.
    4. Bian, Jiang & Yang, Jian & Liu, Yang & Li, Yuxing & Cao, Xuewen, 2022. "Analysis and efficiency enhancement for energy-saving re-liquefaction processes of boil-off gas without external refrigeration cycle on LNG carriers," Energy, Elsevier, vol. 239(PB).
    5. Anan Zhang & Hong Zhang & Meysam Qadrdan & Wei Yang & Xiaolong Jin & Jianzhong Wu, 2019. "Optimal Planning of Integrated Energy Systems for Offshore Oil Extraction and Processing Platforms," Energies, MDPI, vol. 12(4), pages 1-28, February.
    6. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    7. Davide Borelli & Francesco Devia & Corrado Schenone & Federico Silenzi & Luca A. Tagliafico, 2021. "Dynamic Modelling of LNG Powered Combined Energy Systems in Port Areas," Energies, MDPI, vol. 14(12), pages 1-18, June.
    8. Sachajdak, Andrzej & Lappalainen, Jari & Mikkonen, Hannu, 2019. "Dynamic simulation in development of contemporary energy systems – oxy combustion case study," Energy, Elsevier, vol. 181(C), pages 964-973.
    9. Muhammad Abdul Qyyum & Muhammad Yasin & Alam Nawaz & Tianbiao He & Wahid Ali & Junaid Haider & Kinza Qadeer & Abdul-Sattar Nizami & Konstantinos Moustakas & Moonyong Lee, 2020. "Single-Solution-Based Vortex Search Strategy for Optimal Design of Offshore and Onshore Natural Gas Liquefaction Processes," Energies, MDPI, vol. 13(7), pages 1-22, April.
    10. Kimball C. Chen & Matthew Leach & Mairi J. Black & Meron Tesfamichael & Francis Kemausuor & Patrick Littlewood & Terry Marker & Onesmus Mwabonje & Yacob Mulugetta & Richard J. Murphy & Rocio Diaz-Chav, 2021. "BioLPG for Clean Cooking in Sub-Saharan Africa: Present and Future Feasibility of Technologies, Feedstocks, Enabling Conditions and Financing," Energies, MDPI, vol. 14(13), pages 1-22, June.
    11. Ali Rehman & Muhammad Abdul Qyyum & Ashfaq Ahmad & Saad Nawaz & Moonyong Lee & Li Wang, 2020. "Performance Enhancement of Nitrogen Dual Expander and Single Mixed Refrigerant LNG Processes Using Jaya Optimization Approach," Energies, MDPI, vol. 13(12), pages 1-27, June.
    12. Kim, Young Han, 2014. "Application of partially diabatic divided wall column to floating liquefied natural gas plant," Energy, Elsevier, vol. 70(C), pages 435-443.
    13. Long, Nguyen Van Duc & Minh, Le Quang & Nhien, Le Cao & Lee, Moonyong, 2015. "A novel self-heat recuperative dividing wall column to maximize energy efficiency and column throughput in retrofitting and debottlenecking of a side stream column," Applied Energy, Elsevier, vol. 159(C), pages 28-38.
    14. Ghorbani, Bahram & Shirmohammadi, Reza & Mehrpooya, Mehdi & Hamedi, Mohammad-Hossein, 2018. "Structural, operational and economic optimization of cryogenic natural gas plant using NSGAII two-objective genetic algorithm," Energy, Elsevier, vol. 159(C), pages 410-428.
    15. Chen, Ting & Zhang, Bingjian & Chen, Qinglin, 2014. "Heat integration of fractionating systems in para-xylene plants based on column optimization," Energy, Elsevier, vol. 72(C), pages 311-321.
    16. Rehman, Ali & Qyyum, Muhammad Abdul & Qadeer, Kinza & Zakir, Fatima & Ding, Yulong & Lee, Moonyong & Wang, Li, 2020. "Integrated biomethane liquefaction using exergy from the discharging end of a liquid air energy storage system," Applied Energy, Elsevier, vol. 260(C).
    17. Xia, Hui & Ye, Qing & Feng, Shenyao & Li, Rui & Suo, Xiaomeng, 2017. "A novel energy-saving pressure swing distillation process based on self-heat recuperation technology," Energy, Elsevier, vol. 141(C), pages 770-781.
    18. Lei Gao & Jiaxin Wang & Maxime Binama & Qian Li & Weihua Cai, 2022. "The Design and Optimization of Natural Gas Liquefaction Processes: A Review," Energies, MDPI, vol. 15(21), pages 1-56, October.
    19. Liu, Zhongxuan & Kim, Donghoi & Gundersen, Truls, 2022. "Optimal recovery of thermal energy in liquid air energy storage," Energy, Elsevier, vol. 240(C).
    20. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.