IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics0360544221012779.html
   My bibliography  Save this article

Dynamic modeling and analysis of LNG fuel tank pressurization under marine conditions

Author

Listed:
  • Wang, Cheng
  • Ju, Yonglin
  • Fu, Yunzhun

Abstract

In this paper, a fast and effective dynamic model was developed to predict and investigate the performance of liquefied natural gas (LNG) fuel tank pressurization under marine conditions. An extended sloshing Nusselt number was defined to quantitatively evaluate the heat transfer enhancement in horizontal tanks under resonant sloshing. The validity of the model was confirmed by the corresponding experimental data. The pre-pressurization process, the fuel gas supply process, and the cryogenic liquid sloshing were investigated for two types of LNG fueled ships. Parametric studies, including the tank size, the filling level, the rated power, the engine load, and the sloshing intensity were conducted. The results showed that the heat transfer between the vapor and tank wall dominates the pressurization process, while the vapor condensation at the liquid-vapor interface dominates the holding period and the sloshing process. Moreover, the sloshing has a severe impact on the tank pressure, especially when the resonance condition of the tank is met, which can cause the shut-down of gas engines in extreme situations.

Suggested Citation

  • Wang, Cheng & Ju, Yonglin & Fu, Yunzhun, 2021. "Dynamic modeling and analysis of LNG fuel tank pressurization under marine conditions," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012779
    DOI: 10.1016/j.energy.2021.121029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221012779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhihao & Sharafian, Amir & Mérida, Walter, 2020. "Non-equilibrium thermodynamic model for liquefied natural gas storage tanks," Energy, Elsevier, vol. 190(C).
    2. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
    3. Burel, Fabio & Taccani, Rodolfo & Zuliani, Nicola, 2013. "Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion," Energy, Elsevier, vol. 57(C), pages 412-420.
    4. Siyuan Wang & Theo Notteboom, 2014. "The Adoption of Liquefied Natural Gas as a Ship Fuel: A Systematic Review of Perspectives and Challenges," Transport Reviews, Taylor & Francis Journals, vol. 34(6), pages 749-774, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalikatzarakis, Miltiadis & Theotokatos, Gerasimos & Coraddu, Andrea & Sayan, Paul & Wong, Seng Yew, 2022. "Model based analysis of the boil-off gas management and control for LNG fuelled vessels," Energy, Elsevier, vol. 251(C).
    2. Duan, Zhongdi & Zhu, Yifeng & Wang, Chenbiao & Yuan, Yuchao & Xue, Hongxiang & Tang, Wenyong, 2023. "Numerical and theoretical prediction of the thermodynamic response in marine LNG fuel tanks under sloshing conditions," Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Cheng & Ju, Yonglin & Fu, Yunzhun, 2021. "Comparative life cycle cost analysis of low pressure fuel gas supply systems for LNG fueled ships," Energy, Elsevier, vol. 218(C).
    2. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Wan, Chengpeng & Yan, Xinping & Zhang, Di & Yang, Zaili, 2019. "A novel policy making aid model for the development of LNG fuelled ships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 29-44.
    5. Al Baroudi, Hisham & Awoyomi, Adeola & Patchigolla, Kumar & Jonnalagadda, Kranthi & Anthony, E.J., 2021. "A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage," Applied Energy, Elsevier, vol. 287(C).
    6. Pfoser, Sarah & Schauer, Oliver & Costa, Yasel, 2018. "Acceptance of LNG as an alternative fuel: Determinants and policy implications," Energy Policy, Elsevier, vol. 120(C), pages 259-267.
    7. Md Arman Arefin & Md Nurun Nabi & Md Washim Akram & Mohammad Towhidul Islam & Md Wahid Chowdhury, 2020. "A Review on Liquefied Natural Gas as Fuels for Dual Fuel Engines: Opportunities, Challenges and Responses," Energies, MDPI, vol. 13(22), pages 1-19, November.
    8. Kalikatzarakis, Miltiadis & Theotokatos, Gerasimos & Coraddu, Andrea & Sayan, Paul & Wong, Seng Yew, 2022. "Model based analysis of the boil-off gas management and control for LNG fuelled vessels," Energy, Elsevier, vol. 251(C).
    9. Saleh Aseel & Hussein Al-Yafei & Murat Kucukvar & Nuri C. Onat, 2021. "Life Cycle Air Emissions and Social Human Health Impact Assessment of Liquified Natural Gas Maritime Transport," Energies, MDPI, vol. 14(19), pages 1-19, September.
    10. Ivan Smajla & Daria Karasalihović Sedlar & Branko Drljača & Lucija Jukić, 2019. "Fuel Switch to LNG in Heavy Truck Traffic," Energies, MDPI, vol. 12(3), pages 1-19, February.
    11. Gi-Young Chae & Seung-Hyun An & Chul-Yong Lee, 2021. "Demand Forecasting for Liquified Natural Gas Bunkering by Country and Region Using Meta-Analysis and Artificial Intelligence," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    12. Alejandro Ortega & Konstantinos Gkoumas & Anastasios Tsakalidis & Ferenc Pekár, 2021. "Low-Emission Alternative Energy for Transport in the EU: State of Play of Research and Innovation," Energies, MDPI, vol. 14(22), pages 1-22, November.
    13. Wu, Sixian & Ju, Yonglin, 2021. "Numerical study of the boil-off gas (BOG) generation characteristics in a type C independent liquefied natural gas (LNG) tank under sloshing excitation," Energy, Elsevier, vol. 223(C).
    14. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Wang, Longyi & Wu, Mei & Sun, Xiao & Gan, Zhihua, 2016. "A cascade pulse tube cooler capable of energy recovery," Applied Energy, Elsevier, vol. 164(C), pages 572-578.
    16. Luo, Xiaobo & Wang, Meihong, 2017. "Study of solvent-based carbon capture for cargo ships through process modelling and simulation," Applied Energy, Elsevier, vol. 195(C), pages 402-413.
    17. Devine, Mel T. & Russo, Marianna, 2019. "Liquefied natural gas and gas storage valuation: Lessons from the integrated Irish and UK markets," Applied Energy, Elsevier, vol. 238(C), pages 1389-1406.
    18. Jang, Hayoung & Jeong, Byongug & Zhou, Peilin & Ha, Seungman & Nam, Dong, 2021. "Demystifying the lifecycle environmental benefits and harms of LNG as marine fuel," Applied Energy, Elsevier, vol. 292(C).
    19. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    20. Johannes Full & Silja Hohmann & Sonja Ziehn & Edgar Gamero & Tobias Schließ & Hans-Peter Schmid & Robert Miehe & Alexander Sauer, 2023. "Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU)," Energies, MDPI, vol. 16(13), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.