IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v225y2021ics0360544221005089.html
   My bibliography  Save this article

The effects of nanoadditives on the performance and emission characteristics of spark-ignition gasoline engines: A critical review with a focus on health impacts

Author

Listed:
  • Dehhaghi, Mona
  • Kazemi Shariat Panahi, Hamed
  • Aghbashlo, Mortaza
  • Lam, Su Shiung
  • Tabatabaei, Meisam

Abstract

Gasoline is currently the main fuel of choice in many cities worldwide, and hence, the consequent exposure to its emissions, i.e., CO, NOX, unreacted hydrocarbons, particulate matters, lead, sulfur dioxide, and ozone, is inevitable. Among the various solutions put forth to mitigate the toxic gasoline-related air pollution, while improving fuel performance at the same time, is the application of nanoparticles. Considering the above, the present paper aims to review and critically discuss the improvements made in engine performance and exhaust emission parameters by adding nanosized fuel additives in gasoline. Overall, the addition of fuel nanoadditives enhances the thermo-physical properties of the fuel and improves combustion characteristics. Moreover, the inclusion of the fuel nanoadditives generally results in early combustion and shortened ignition delay. In more detail, the optimum quantity of fuel nanoadditives is associated with improvements in ignition characteristics and reductions in exhaust emissions. The present work also scrutinizes the adverse health effects of various gasoline-related emissions. Finally, possible mechanisms underlying the improvements in gasoline properties and its combustion in the presence of nanoadditives are also reviewed and discussed.

Suggested Citation

  • Dehhaghi, Mona & Kazemi Shariat Panahi, Hamed & Aghbashlo, Mortaza & Lam, Su Shiung & Tabatabaei, Meisam, 2021. "The effects of nanoadditives on the performance and emission characteristics of spark-ignition gasoline engines: A critical review with a focus on health impacts," Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221005089
    DOI: 10.1016/j.energy.2021.120259
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221005089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    2. Segolene Depayras & Tatiana Kondakova & Hermann J. Heipieper & Marc Feuilloley & Nicole Orange & Cecile Duclairoir Poc, 2018. "The Hidden Face of Nitrogen Oxides Species: From Toxic Effects to Potential Cure?," Chapters, in: Sonia Soloneski & Marcelo L. Larramendy (ed.), Emerging Pollutants - Some Strategies for the Quality Preservation of Our Environment, IntechOpen.
    3. Ali Erdemir & Giovanni Ramirez & Osman L. Eryilmaz & Badri Narayanan & Yifeng Liao & Ganesh Kamath & Subramanian K. R. S. Sankaranarayanan, 2016. "Carbon-based tribofilms from lubricating oils," Nature, Nature, vol. 536(7614), pages 67-71, August.
    4. Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Aghbashlo, Mortaza & Karimi, Keikhosro & Tabatabaei, Meisam, 2020. "Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline," Renewable Energy, Elsevier, vol. 145(C), pages 699-710.
    5. Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Aghbashlo, Mortaza & Karimi, Keikhosro & Tabatabaei, Meisam, 2019. "Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 626-642.
    6. Aghbashlo, Mortaza & Tabatabaei, Meisam & Khalife, Esmail & Roodbar Shojaei, Taha & Dadak, Ali, 2018. "Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide," Energy, Elsevier, vol. 149(C), pages 967-978.
    7. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    8. Hosseini, Seyyed Hassan & Taghizadeh-Alisaraei, Ahmad & Ghobadian, Barat & Abbaszadeh-Mayvan, Ahmad, 2017. "Performance and emission characteristics of a CI engine fuelled with carbon nanotubes and diesel-biodiesel blends," Renewable Energy, Elsevier, vol. 111(C), pages 201-213.
    9. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1392-1407.
    10. Shiv Prasad & Dhanya M S, 2011. "Air Quality and Biofuels," Chapters, in: Marco Aurelio Dos Santos Bernardes (ed.), Environmental Impact of Biofuels, IntechOpen.
    11. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    12. Bergthorson, J.M. & Goroshin, S. & Soo, M.J. & Julien, P. & Palecka, J. & Frost, D.L. & Jarvis, D.J., 2015. "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, Elsevier, vol. 160(C), pages 368-382.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hosseini, Seyyed Hassan & Rastegari, Hajar & Aghbashlo, Mortaza & Hajiahmad, Ali & Hosseinzadeh-Bandbafha, Homa & Mohammadi, Pouya & Jamal Sisi, Abdollah & Khalife, Esmail & Lam, Su Shiung & Pan, Junt, 2022. "Effects of metal-organic framework nanoparticles on the combustion, performance, and emission characteristics of a diesel engine," Energy, Elsevier, vol. 260(C).
    2. Hosseinzadeh-Bandbafha, Homa & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Orooji, Yasin & Shahbeik, Hossein & Mahian, Omid & Karimi-Maleh, Hassan & Kalam, Md Abul & Salehi Jouzani, Gholamreza & M, 2023. "Applications of nanotechnology in biodiesel combustion and post-combustion stages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Yakın, Ahmet & Behcet, Rasim & Solmaz, Hamit & Halis, Serdar, 2022. "Testing sodium borohydride as a fuel additive in internal combustion gasoline engine," Energy, Elsevier, vol. 254(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Duarte Souza Alvarenga Santos, Nathália & Rückert Roso, Vinícius & Teixeira Malaquias, Augusto César & Coelho Baêta, José Guilherme, 2021. "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Mirmohamadsadeghi, Safoora & Karimi, Keikhosro & Azarbaijani, Reza & Parsa Yeganeh, Laleh & Angelidaki, Irini & Nizami, Abdul-Sattar & Bhat, Rajeev & Dashora, Kavya & Vijay, Virendra Kumar & Aghbashlo, 2021. "Pretreatment of lignocelluloses for enhanced biogas production: A review on influencing mechanisms and the importance of microbial diversity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Alejandro Moure Abelenda & Kirk T. Semple & George Aggidis & Farid Aiouache, 2022. "Circularity of Bioenergy Residues: Acidification of Anaerobic Digestate Prior to Addition of Wood Ash," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    6. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Du, Ran & Li, Chong & Lin, Weichao & Lin, Carol Sze Ki & Yan, Jianbin, 2022. "Domesticating a bacterial consortium for efficient lignocellulosic biomass conversion," Renewable Energy, Elsevier, vol. 189(C), pages 359-368.
    9. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    10. Rivera-Hernández, Yessica & Hernández-Eugenio, Guadalupe & Balagurusamy, Nagamani & Espinosa-Solares, Teodoro, 2022. "Sargassum-pig manure co-digestion: An alternative for bioenergy production and treating a polluting coastal waste," Renewable Energy, Elsevier, vol. 199(C), pages 1336-1344.
    11. Hu, Yulin & Gong, Mengyue & Xing, Xuelian & Wang, Haoyu & Zeng, Yimin & Xu, Chunbao Charles, 2020. "Supercritical water gasification of biomass model compounds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    12. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    13. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Aghbashlo, Mortaza & Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Gupta, Vijai Kumar & Amiri, Hamid & Lam, Su Shiung & Morosuk, Tatiana & Tabatabaei, Meisam, 2021. "Exergoenvironmental analysis of bioenergy systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Meng, Xingyao & Wang, Qingping & Zhao, Xixi & Cai, Yafan & Ma, Xuguang & Fu, Jingyi & Wang, Pan & Wang, Yongjing & Liu, Wei & Ren, Lianhai, 2023. "A review of the technologies used for preserving anaerobic digestion inoculum," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Ahmadi, Mohammad Mahdi & Keyhani, Alireza & Rosen, Marc A. & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Towards sustainable net-zero districts using the extended exergy accounting concept," Renewable Energy, Elsevier, vol. 197(C), pages 747-764.
    18. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Abdallah, Muhammed S. & Mansour, Mohy S. & Allam, Nageh K., 2021. "Mapping the stability of free-jet biogas flames under partially premixed combustion," Energy, Elsevier, vol. 220(C).
    20. Stolecka, Katarzyna & Rusin, Andrzej, 2021. "Potential hazards posed by biogas plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221005089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.