IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v215y2021ipas0360544220322246.html
   My bibliography  Save this article

Steam synergic effect on oxygen carrier performance and WGS promotion ability of iron-oxides

Author

Listed:
  • Chen, Qindong
  • Hu, Song
  • Xu, Qiyong
  • Su, Sheng
  • Wang, Yi
  • Xu, Kai
  • He, Limo
  • Xiang, Jun

Abstract

During chemical looping process, the presence of H2O has great effect on oxygen transfer and hydrogen generation process, thus making the reaction become more complicated. In this study, Fe2O3 was chosen as the original oxygen carrier and its oxygen carrying capacity and reactivity under different H2O/CO molar ratios were systematically investigated. The chemical compositions of reacted iron-based oxides were measured by Mössbauer spectroscopy. According to Mössbauer spectroscopy results and product gas analysis, the paper gave further insight into the impact of H2O on oxygen carrying property and catalyzed effect of iron-based oxides. The results indicated that: (i) The oxygen carrying capacity of Fe2O3 decreased from 45.93% to 11.33% (the theoretical maximum to be 100%) when the H2O/CO ratio varied from 0:1 to 2:1. (ii) The maximum CO2 conversion rate, which reflects the reduction reactivity, was closely related to H2O/CO ratio and achieved the maximum (4.83%/min) at a H2O/CO ratio of 1:1. (iii) The presence of H2O could promote the reduction process of Fe2O3 to generate Fe3O4. (iv) Both Fe3O4 and FeO which existed as reduction states of iron oxides had ability to promote the water-gas shift reaction during oxygen transfer process.

Suggested Citation

  • Chen, Qindong & Hu, Song & Xu, Qiyong & Su, Sheng & Wang, Yi & Xu, Kai & He, Limo & Xiang, Jun, 2021. "Steam synergic effect on oxygen carrier performance and WGS promotion ability of iron-oxides," Energy, Elsevier, vol. 215(PA).
  • Handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220322246
    DOI: 10.1016/j.energy.2020.119117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220322246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Udomsirichakorn, Jakkapong & Salam, P. Abdul, 2014. "Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 565-579.
    2. Ku, Young & Wu, Hsuan-Chih & Chiu, Ping-Chin & Tseng, Yao-Hsuan & Kuo, Yu-Lin, 2014. "Methane combustion by moving bed fuel reactor with Fe2O3/Al2O3 oxygen carriers," Applied Energy, Elsevier, vol. 113(C), pages 1909-1915.
    3. Gradisher, Logan & Dutcher, Bryce & Fan, Maohong, 2015. "Catalytic hydrogen production from fossil fuels via the water gas shift reaction," Applied Energy, Elsevier, vol. 139(C), pages 335-349.
    4. Huang, Zhen & Deng, Zhengbing & Chen, Dezhen & He, Fang & Liu, Shuai & Zhao, Kun & Wei, Guoqiang & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2017. "Thermodynamic analysis and kinetic investigations on biomass char chemical looping gasification using Fe-Ni bimetallic oxygen carrier," Energy, Elsevier, vol. 141(C), pages 1836-1844.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    2. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Chen, Guanyi & Yao, Jingang & Liu, Jing & Yan, Beibei & Shan, Rui, 2016. "Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil," Renewable Energy, Elsevier, vol. 91(C), pages 315-322.
    4. Magoua Mbeugang, Christian Fabrice & Li, Bin & Lin, Dan & Xie, Xing & Wang, Shuaijun & Wang, Shuang & Zhang, Shu & Huang, Yong & Liu, Dongjing & Wang, Qian, 2021. "Hydrogen rich syngas production from sorption enhanced gasification of cellulose in the presence of calcium oxide," Energy, Elsevier, vol. 228(C).
    5. Gao, Chengkang & Zhu, Sulong & An, Nan & Na, Hongming & You, Huan & Gao, Chengbo, 2021. "Comprehensive comparison of multiple renewable power generation methods: A combination analysis of life cycle assessment and ecological footprint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    6. Zhao, Haibo & Guo, Lei & Zou, Xixian, 2015. "Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 408-415.
    7. Zhu, Min & Chen, Shiyi & Soomro, Ahsanullah & Hu, Jun & Sun, Zhao & Ma, Shiwei & Xiang, Wenguo, 2018. "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation," Applied Energy, Elsevier, vol. 225(C), pages 912-921.
    8. Adnan, Muflih A. & Hossain, Mohammad M., 2018. "Gasification of various biomasses including microalgae using CO2 – A thermodynamic study," Renewable Energy, Elsevier, vol. 119(C), pages 598-607.
    9. Mohamed, Usama & Zhao, Yingjie & Huang, Yi & Cui, Yang & Shi, Lijuan & Li, Congming & Pourkashanian, Mohamed & Wei, Guoqiang & Yi, Qun & Nimmo, William, 2020. "Sustainability evaluation of biomass direct gasification using chemical looping technology for power generation with and w/o CO2 capture," Energy, Elsevier, vol. 205(C).
    10. Wang, Dechao & Jin, Lijun & Li, Yang & Yao, Demeng & Wang, Jiaofei & Hu, Haoquan, 2018. "Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3," Energy, Elsevier, vol. 162(C), pages 542-553.
    11. Ma, Jiao & Mu, Lan & Zhang, Zhikun & Wang, Zhuozhi & Shen, Boxiong & Zhang, Lei & Li, Aimin, 2020. "The effects of the modification of biodegradation and the interaction of bulking agents on the combustion characteristics of biodried products derived from municipal organic wastes," Energy, Elsevier, vol. 209(C).
    12. Wang, Xudong & Shao, Yali & Jin, Baosheng, 2021. "Thermodynamic evaluation and modelling of an auto-thermal hybrid system of chemical looping combustion and air separation for power generation coupling with CO2 cycles," Energy, Elsevier, vol. 236(C).
    13. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    14. Ren, Yi & Wang, Zhiyong & Chen, Jianbiao & Gao, Haojie & Guo, Kai & Wang, Xu & Wang, Xiaoyuan & Wang, Yinfeng & Chen, Haijun & Zhu, Jinjiao & Zhu, Yuezhao, 2023. "Effect of water/acetic acid washing pretreatment on biomass chemical looping gasification (BCLG) using cost-effective oxygen carrier from iron-rich sludge ash," Energy, Elsevier, vol. 272(C).
    15. Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
    16. Hou, Tengfei & Zhang, Shaoyin & Chen, Yongdong & Wang, Dazhi & Cai, Weijie, 2015. "Hydrogen production from ethanol reforming: Catalysts and reaction mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 132-148.
    17. Luu, Minh Tri & Milani, Dia & Sharma, Manish & Zeaiter, Joseph & Abbas, Ali, 2016. "Model-based analysis of CO2 revalorization for di-methyl ether synthesis driven by solar catalytic reforming," Applied Energy, Elsevier, vol. 177(C), pages 863-878.
    18. Abdul Rahim Shaikh & Qinhui Wang & Long Han & Yi Feng & Zohaib Sharif & Zhixin Li & Jianmeng Cen & Sunel Kumar, 2022. "Techno-Economic Analysis of Hydrogen and Electricity Production by Biomass Calcium Looping Gasification," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    19. Nguyen, Nhut M. & Alobaid, Falah & May, Jan & Peters, Jens & Epple, Bernd, 2020. "Experimental study on steam gasification of torrefied woodchips in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 202(C).
    20. Lee, Chan Hyun & Lee, Ki Bong, 2017. "Sorption-enhanced water gas shift reaction for high-purity hydrogen production: Application of a Na-Mg double salt-based sorbent and the divided section packing concept," Applied Energy, Elsevier, vol. 205(C), pages 316-322.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220322246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.