IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v20y1995i1p63-72.html
   My bibliography  Save this article

Energy alternatives for lighting in households: An evaluation using an integrated goal programming-AHP model

Author

Listed:
  • Ramanathan, R.
  • Ganesh, L.S.

Abstract

Seven energy sources usable for lighting in households have been evaluated against 12 (9 quantitative and 3 qualitative) objectives representing the energy-economy-environmental system using an integrated goal programming-AHP model. Sensitivity analysis has been performed. While photovoltaics, grid electricity, and electricity generated from diesel, biogas and fuelwood are preferred, the use of kerosene and biogas requires efficiency improvements of the lamps.

Suggested Citation

  • Ramanathan, R. & Ganesh, L.S., 1995. "Energy alternatives for lighting in households: An evaluation using an integrated goal programming-AHP model," Energy, Elsevier, vol. 20(1), pages 63-72.
  • Handle: RePEc:eee:energy:v:20:y:1995:i:1:p:63-72
    DOI: 10.1016/0360-5442(94)00050-D
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/036054429400050D
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(94)00050-D?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gökay Yörük & Ugur Bac & Fatma Yerlikaya-Özkurt & Kamil Demirberk Ünlü, 2023. "Strategic Electricity Production Planning of Turkey via Mixed Integer Programming Based on Time Series Forecasting," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
    2. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    3. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    4. Kulisic, Biljana & Dimitriou, Ioannis & Mola-Yudego, Blas, 2021. "From preferences to concerted policy on mandated share for renewable energy in transport," Energy Policy, Elsevier, vol. 155(C).
    5. Chinese, Damiana & Nardin, Gioacchino & Saro, Onorio, 2011. "Multi-criteria analysis for the selection of space heating systems in an industrial building," Energy, Elsevier, vol. 36(1), pages 556-565.
    6. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2010. "Integrated renewable energy systems for off grid rural electrification of remote area," Renewable Energy, Elsevier, vol. 35(6), pages 1342-1349.
    7. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    8. Mezher, Toufic & Chedid, Riad & Zahabi, Wissam, 1998. "Energy resource allocation using multi-objective goal programming: the case of Lebanon," Applied Energy, Elsevier, vol. 61(4), pages 175-192, December.
    9. Raja Jayaraman & Danilo Liuzzi & Cinzia Colapinto & Tufail Malik, 2017. "A fuzzy goal programming model to analyze energy, environmental and sustainability goals of the United Arab Emirates," Annals of Operations Research, Springer, vol. 251(1), pages 255-270, April.
    10. Rahul Hiremath & Bimlesh Kumar & P. Balachandra & N. Ravindranath, 2010. "Sustainable bioenergy production strategies for rural India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(6), pages 571-590, August.
    11. Srikant Gupta & Armin Fügenschuh & Irfan Ali, 2018. "A Multi-Criteria Goal Programming Model to Analyze the Sustainable Goals of India," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    12. Gezen, Mesliha & Karaaslan, Abdulkerim, 2022. "Energy planning based on Vision-2023 of Turkey with a goal programming under fuzzy multi-objectives," Energy, Elsevier, vol. 261(PA).
    13. Hiremath, Rahul B. & Kumar, Bimlesh & Balachandra, P. & Ravindranath, N.H., 2010. "Bottom-up approach for decentralised energy planning: Case study of Tumkur district in India," Energy Policy, Elsevier, vol. 38(2), pages 862-874, February.
    14. Xu, Chengyuan & Xie, Zhichao & Kang, Yili & Yu, Guoyi & You, Zhenjiang & You, Lijun & Zhang, Jingyi & Yan, Xiaopeng, 2020. "A novel material evaluation method for lost circulation control and formation damage prevention in deep fractured tight reservoir," Energy, Elsevier, vol. 210(C).
    15. Wang, Q. & Poh, K.L., 2014. "A survey of integrated decision analysis in energy and environmental modeling," Energy, Elsevier, vol. 77(C), pages 691-702.
    16. Wang, Bing & Kocaoglu, Dundar F. & Daim, Tugrul U. & Yang, Jiting, 2010. "A decision model for energy resource selection in China," Energy Policy, Elsevier, vol. 38(11), pages 7130-7141, November.
    17. Kahraman, Cengiz & Kaya, İhsan & Cebi, Selcuk, 2009. "A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process," Energy, Elsevier, vol. 34(10), pages 1603-1616.
    18. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    19. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Decision analysis in energy and environmental modeling: An update," Energy, Elsevier, vol. 31(14), pages 2604-2622.
    20. Nixon, J.D. & Dey, P.K. & Davies, P.A., 2010. "Which is the best solar thermal collection technology for electricity generation in north-west India? Evaluation of options using the analytical hierarchy process," Energy, Elsevier, vol. 35(12), pages 5230-5240.
    21. Vashishtha, Sanjay & Ramachandran, M., 2006. "Multicriteria evaluation of demand side management (DSM) implementation strategies in the Indian power sector," Energy, Elsevier, vol. 31(12), pages 2210-2225.
    22. Kayakutlu, Gulgun & Daim, Tugrul & Kunt, Meltem & Altay, Ayca & Suharto, Yulianto, 2017. "Scenarios for regional waste management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1323-1335.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:20:y:1995:i:1:p:63-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.