IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v204y2020ics036054422030952x.html
   My bibliography  Save this article

A kelly criterion based optimal scheduling of a microgrid on a steam-assisted gravity drainage (SAGD) facility

Author

Listed:
  • Purkayastha, Sagar N.
  • Chen, Yujun
  • Gates, Ian D.
  • Trifkovic, Milana

Abstract

Steam Assisted Gravity Drainage (SAGD) is one of the major thermal recovery techniques to extract the Canadian bitumen. In the process, there is substantial amount of heat left behind in the reservoir at the end of SAGD operations, which can be converted to electricity and distributed profitably utilizing a microgrid. Concurrently, based on Canada’s green energy initiative, we present the integration and optimal power management of a microgrid on a SAGD facility, comprising of an Organic Rankine Cycle based turbine (ORC), a Gas Turbine (GT), a Battery Storage System (BSS), the central grid and the SAGD facility as the load. We introduce a Kelly Criterion (KC) based microgrid scheduling technique, which is based on maximizing information gain and is independent of supply-demand relationships. Based on the formulation, it was hypothesized that the KC based algorithm is superior compared to standard optimization techniques in a highly volatile electricity market. The electricity market volatility is captured via a wavelet network based forecasting technique. The case study presented highlights the advantages of the KC approach and its efficacy in a highly volatile energy market. The results show the superiority of the KC based scheduling algorithm in highly volatile energy markets, with forecast data irregularities.

Suggested Citation

  • Purkayastha, Sagar N. & Chen, Yujun & Gates, Ian D. & Trifkovic, Milana, 2020. "A kelly criterion based optimal scheduling of a microgrid on a steam-assisted gravity drainage (SAGD) facility," Energy, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:energy:v:204:y:2020:i:c:s036054422030952x
    DOI: 10.1016/j.energy.2020.117845
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030952X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    2. Kavasseri, Rajesh G. & Seetharaman, Krithika, 2009. "Day-ahead wind speed forecasting using f-ARIMA models," Renewable Energy, Elsevier, vol. 34(5), pages 1388-1393.
    3. Baziar, Aliasghar & Kavousi-Fard, Abdollah, 2013. "Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices," Renewable Energy, Elsevier, vol. 59(C), pages 158-166.
    4. Tan, Zhongfu & Zhang, Jinliang & Wang, Jianhui & Xu, Jun, 2010. "Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models," Applied Energy, Elsevier, vol. 87(11), pages 3606-3610, November.
    5. Shuai, Zhikang & Sun, Yingyun & Shen, Z. John & Tian, Wei & Tu, Chunming & Li, Yan & Yin, Xin, 2016. "Microgrid stability: Classification and a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 167-179.
    6. Chen, Y. & Trifkovic, M., 2018. "Optimal scheduling of a microgrid in a volatile electricity market environment: Portfolio optimization approach," Applied Energy, Elsevier, vol. 226(C), pages 703-712.
    7. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.
    8. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.
    9. Liu, Bo-Tau & Chien, Kuo-Hsiang & Wang, Chi-Chuan, 2004. "Effect of working fluids on organic Rankine cycle for waste heat recovery," Energy, Elsevier, vol. 29(8), pages 1207-1217.
    10. Markowitz, Harry M, 1991. "Foundations of Portfolio Theory," Journal of Finance, American Finance Association, vol. 46(2), pages 469-477, June.
    11. Katti, Pradeep K. & Khedkar, Mohan K., 2007. "Alternative energy facilities based on site matching and generation unit sizing for remote area power supply," Renewable Energy, Elsevier, vol. 32(8), pages 1346-1362.
    12. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    13. Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
    14. Wang, Xiaonan & El-Farra, Nael H. & Palazoglu, Ahmet, 2017. "Optimal scheduling of demand responsive industrial production with hybrid renewable energy systems," Renewable Energy, Elsevier, vol. 100(C), pages 53-64.
    15. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    16. Umeozor, Evar Chinedu & Trifkovic, Milana, 2016. "Operational scheduling of microgrids via parametric programming," Applied Energy, Elsevier, vol. 180(C), pages 672-681.
    17. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Y. & Trifkovic, M., 2018. "Optimal scheduling of a microgrid in a volatile electricity market environment: Portfolio optimization approach," Applied Energy, Elsevier, vol. 226(C), pages 703-712.
    2. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    3. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    4. Sung, Taehong & Yun, Eunkoo & Kim, Hyun Dong & Yoon, Sang Youl & Choi, Bum Seog & Kim, Kuisoon & Kim, Jangmok & Jung, Yang Beom & Kim, Kyung Chun, 2016. "Performance characteristics of a 200-kW organic Rankine cycle system in a steel processing plant," Applied Energy, Elsevier, vol. 183(C), pages 623-635.
    5. Yang, Lixiang & Gong, Maoqiong & Guo, Hao & Dong, Xueqiang & Shen, Jun & Wu, Jianfeng, 2016. "Effects of critical and boiling temperatures on system performance and fluid selection indicator for low temperature organic Rankine cycles," Energy, Elsevier, vol. 109(C), pages 830-844.
    6. Shalaby, S.M., 2017. "Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 789-797.
    7. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    8. Long, R. & Bao, Y.J. & Huang, X.M. & Liu, W., 2014. "Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery," Energy, Elsevier, vol. 73(C), pages 475-483.
    9. Ana Cabrera-Tobar & Alessandro Massi Pavan & Giovanni Petrone & Giovanni Spagnuolo, 2022. "A Review of the Optimization and Control Techniques in the Presence of Uncertainties for the Energy Management of Microgrids," Energies, MDPI, vol. 15(23), pages 1-38, December.
    10. Emanuel Canelas & Tânia Pinto-Varela & Bartosz Sawik, 2020. "Electricity Portfolio Optimization for Large Consumers: Iberian Electricity Market Case Study," Energies, MDPI, vol. 13(9), pages 1-21, May.
    11. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    12. Wang, Dongxiang & Ling, Xiang & Peng, Hao & Liu, Lin & Tao, LanLan, 2013. "Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation," Energy, Elsevier, vol. 50(C), pages 343-352.
    13. Feng, Yongqiang & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery," Energy, Elsevier, vol. 82(C), pages 664-677.
    14. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    15. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    16. Sanjay Mukherjee & Abhishek Asthana & Martin Howarth & Jahedul Islam Chowdhury, 2020. "Techno-Economic Assessment of Waste Heat Recovery Technologies for the Food Processing Industry," Energies, MDPI, vol. 13(23), pages 1-26, December.
    17. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    18. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    19. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    20. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:204:y:2020:i:c:s036054422030952x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.