IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v199y2020ics0360544220305314.html
   My bibliography  Save this article

Investigation of using graphite nanofluids to promote methane hydrate formation: Application to solidified natural gas storage

Author

Listed:
  • Lu, Yi-Yu
  • Ge, Bin-Bin
  • Zhong, Dong-Liang

Abstract

Solidified natural gas storage using gas hydrates is a promising technology for non-explosive, high capacity, and environmentally-friendly natural gas storage at mild storage conditions. Improvement in the kinetics of gas hydrate formation is essential for the further development of this novel technology. In this work, the use of graphite nanofluids for enhancing the CH4 hydrate formation was investigated. The experiments were conducted in a stirred tank reactor at 277.15 K and 6.0 MPa. The behavior of the CH4 hydrate nucleation and growth in graphite nanofluids was observed using a microscopy apparatus. The results indicate that compared to liquid water, the gas storage capacity obtained in graphite nanofluids increased by 3%, the induction time for the CH4 hydrate formation decreased by 89%, and the total time for hydrate formation decreased by 67%. Among the three graphite nanoparticles concentrations (0.2, 0.5, and 1.0 wt%) tested in this work, the concentration of 0.5 wt% was optimal for the enhancement of CH4 hydrate formation. The gas storage capacity obtained in the 0.5 wt% graphite nanofluids was higher than that obtained in other nanofluids such as the Fe3O4 and ZnO nanofluids. Thus, the use of graphite nanofluids is an effective approach to enhance hydrate formation for solidified natural gas storage, but the gas storage capacity should be further increased in future work.

Suggested Citation

  • Lu, Yi-Yu & Ge, Bin-Bin & Zhong, Dong-Liang, 2020. "Investigation of using graphite nanofluids to promote methane hydrate formation: Application to solidified natural gas storage," Energy, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305314
    DOI: 10.1016/j.energy.2020.117424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220305314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Jin & Lu, Yi-Yu & Zhong, Dong-Liang & Zou, Zhen-Lin & Li, Jian-Bo, 2019. "Enhanced methane recovery from low-concentration coalbed methane by gas hydrate formation in graphite nanofluids," Energy, Elsevier, vol. 180(C), pages 728-736.
    2. Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Zhixia & Fan, Shuanshi & Wang, Yanhong & Lang, Xuemei & Li, Gang & Liu, Faping & Li, Mengyang, 2023. "High storage capacity and high formation rate of carbon dioxide hydrates via super-hydrophobic fluorinated graphenes," Energy, Elsevier, vol. 264(C).
    2. Wu, Yongji & He, Yurong & Tang, Tianqi & Zhai, Ming, 2023. "Molecular dynamic simulations of methane hydrate formation between solid surfaces: Implications for methane storage," Energy, Elsevier, vol. 262(PB).
    3. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    4. Xiao, Peng & Dong, Bao-Can & Li, Jia & Zhang, Hong-Liang & Chen, Guang-Jin & Sun, Chang-Yu & Huang, Xing, 2022. "An approach to highly efficient filtration of methane hydrate slurry for the continuous hydrate production," Energy, Elsevier, vol. 259(C).
    5. Ge, Bin-Bin & Li, Xi-Yue & Zhong, Dong-Liang & Lu, Yi-Yu, 2022. "Investigation of natural gas storage and transportation by gas hydrate formation in the presence of bio-surfactant sulfonated lignin," Energy, Elsevier, vol. 244(PA).
    6. Shi, Lingli & Li, Junhui & He, Yong & Lu, Jingsheng & Long, Zhen & Liang, Deqing, 2023. "Memory effect test and analysis in methane hydrates reformation process," Energy, Elsevier, vol. 272(C).
    7. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    8. Liu, Zhiming & Li, Yuxing & Wang, Wuchang & Song, Guangchun & Yu, Xinran & Li, Zhigang & Wang, Honghong & Xiao, Wensheng & Wang, Hongyan, 2022. "Study on the characteristics of hydrate formation in HSB solution: Focused on the micro-morphologies," Energy, Elsevier, vol. 244(PB).
    9. Xie, Minghua & Wei, Xiaonan & Chen, Chuanglian & Sun, Chuanwang, 2022. "China's natural gas production peak and energy return on investment (EROI): From the perspective of energy security," Energy Policy, Elsevier, vol. 164(C).
    10. Sun, Jiyue & Jiang, Lei & Chou, I Ming & Nguyen, Ngoc N. & Nguyen, Anh V. & Chen, Ying & Lin, Juezhi & Wu, Chuanjun, 2023. "Thermodynamic and kinetic study of methane hydrate formation in surfactant solutions: From macroscale to microscale," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qiang & Zheng, Junjie & Zhang, Baoyong & Linga, Praveen, 2021. "Coal mine gas separation of methane via clathrate hydrate process aided by tetrahydrofuran and amino acids," Applied Energy, Elsevier, vol. 287(C).
    2. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    3. Fan, Lurong & Xu, Jiuping, 2020. "Authority–enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry," Energy Policy, Elsevier, vol. 147(C).
    4. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    5. Stanislav L. Borodin & Nail G. Musakaev & Denis S. Belskikh, 2022. "Mathematical Modeling of a Non-Isothermal Flow in a Porous Medium Considering Gas Hydrate Decomposition: A Review," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    6. Zhao, Jingyu & Wang, Tao & Deng, Jun & Shu, Chi-Min & Zeng, Qiang & Guo, Tao & Zhang, Yuxuan, 2020. "Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR," Energy, Elsevier, vol. 209(C).
    7. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    8. Sanya Du & Yixin Qu & Hui Li & Xiaohui Yu, 2022. "Methane Adsorption Properties in Biomaterials: A Possible Route to Gas Storage and Transportation," Energies, MDPI, vol. 15(12), pages 1-14, June.
    9. Liu, Xianjie & Feng, Qian & Peng, Zhigang & Zheng, Yong & Liu, Huan, 2020. "Preparation and evaluation of micro-encapsulated thermal control materials for oil well cement slurry," Energy, Elsevier, vol. 208(C).
    10. Lei Wang & Jin Yang & Lilin Li & Ting Sun & Dongsheng Xu, 2022. "Study on the Mechanical Properties of Natural Gas Hydrate Reservoirs with Multicomponent under Different Engineering Conditions," Energies, MDPI, vol. 15(23), pages 1-23, November.
    11. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Heterogeneity of hydrate-bearing sediments: Definition and effects on fluid flow properties," Energy, Elsevier, vol. 229(C).
    12. Ren, Liang-Liang & Jiang, Min & Wang, Ling-Ban & Zhu, Yi-Jian & Li, Zhi & Sun, Chang-Yu & Chen, Guang-Jin, 2020. "Gas hydrate exploitation and carbon dioxide sequestration under maintaining the stiffness of hydrate-bearing sediments," Energy, Elsevier, vol. 194(C).
    13. Yin, Zhenyuan & Zhang, Shuyu & Koh, Shanice & Linga, Praveen, 2020. "Estimation of the thermal conductivity of a heterogeneous CH4-hydrate bearing sample based on particle swarm optimization," Applied Energy, Elsevier, vol. 271(C).
    14. Feng, Qian & Liu, Xian-jie & Peng, Zhi-gang & Zheng, Yong & Huo, Jin-hua & Liu, Huan, 2019. "Preparation of low hydration heat cement slurry with micro-encapsulated thermal control material," Energy, Elsevier, vol. 187(C).
    15. Ge, Bin-Bin & Li, Xi-Yue & Zhong, Dong-Liang & Lu, Yi-Yu, 2022. "Investigation of natural gas storage and transportation by gas hydrate formation in the presence of bio-surfactant sulfonated lignin," Energy, Elsevier, vol. 244(PA).
    16. Shi, Lingli & Li, Junhui & He, Yong & Lu, Jingsheng & Long, Zhen & Liang, Deqing, 2023. "Memory effect test and analysis in methane hydrates reformation process," Energy, Elsevier, vol. 272(C).
    17. Bhattacharjee, Gaurav & Prakash Veluswamy, Hari & Kumar, Rajnish & Linga, Praveen, 2020. "Rapid methane storage via sII hydrates at ambient temperature," Applied Energy, Elsevier, vol. 269(C).
    18. Mu, Liang & Tan, Qiqi & Li, Xianlong & Zhang, Qingyun & Cui, Qingyan, 2023. "A novel method to store methane by forming hydrate in the high water-oil ratio emulsions," Energy, Elsevier, vol. 264(C).
    19. Xie, Yan & Zheng, Tao & Zhong, Jin-Rong & Zhu, Yu-Jie & Wang, Yun-Fei & Zhang, Yu & Li, Rui & Yuan, Qing & Sun, Chang-Yu & Chen, Guang-Jin, 2020. "Experimental research on self-preservation effect of methane hydrate in porous sediments," Applied Energy, Elsevier, vol. 268(C).
    20. Ren, Liang-Liang & Qi, Ya-Hui & Chen, Jun-Li & Sun, Yi-Fei & Sun, Chang-Yu & Wang, Xiao-Hui & Chen, Guang-Jin & Yuan, Qing & Pang, Wei-Xin & Li, Qing-Ping, 2020. "Dependence of acoustic properties on hydrate-bearing sediments with heterogeneous distribution," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.