IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v287y2021ics0306261921001227.html
   My bibliography  Save this article

Coal mine gas separation of methane via clathrate hydrate process aided by tetrahydrofuran and amino acids

Author

Listed:
  • Zhang, Qiang
  • Zheng, Junjie
  • Zhang, Baoyong
  • Linga, Praveen

Abstract

Coal bed methane (CBM) is an unconventional natural gas resource generated and stored in coal seams. It is currently not commercially viable in many regions due to the high concentration of non-flammable gases such as nitrogen. The CBM separation is crucial for both economic benefit and methane emission reduction. The biggest challenge lies in the separation of low-concentration CBM. Gas separation via gas hydrate is gaining great attraction due to its safe, clean, and economically efficient features. We examined the effects of two environmentally benign amino acids L-tryptophan and L-leucine on hydrate formation from 30% CH4/70% N2 mixture in the presence of tetrahydrofuran (THF, 5.56 mol%). Experiments were carried out at 283.2 K and 3.0 MPa with different solution volumes to study the impact of gas/liquid volume ratio (calculated at standard pressure and temperature conditions). The lower gas/liquid volume ratio improved the CH4 recovery ratio and separation factor but lowered the kinetics. The effect of amino acid is concentration-dependent. In synergy with 5.56 mol% THF solution (gas/liquid volume ratio of 67/1), L-tryptophan (5000 ppm) enhanced the CH4 recovery ratio from 58.3% to 71.4% and boosted the initial hydrate growth rate by 130%. On the other hand, L-leucine (5000 ppm) showed no obvious impact on the kinetics but achieved the highest CH4 enrichment in the hydrate phase (from 30.0 mol% in the feed gas to 56.8 mol% in the hydrates). The high CH4 recovery ratio, enhanced kinetics, and simplicity of this process demonstrate the potential of developing an efficient and economical recovery method for low-concentration CBM.

Suggested Citation

  • Zhang, Qiang & Zheng, Junjie & Zhang, Baoyong & Linga, Praveen, 2021. "Coal mine gas separation of methane via clathrate hydrate process aided by tetrahydrofuran and amino acids," Applied Energy, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:appene:v:287:y:2021:i:c:s0306261921001227
    DOI: 10.1016/j.apenergy.2021.116576
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921001227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Jin & Lu, Yi-Yu & Zhong, Dong-Liang & Zou, Zhen-Lin & Li, Jian-Bo, 2019. "Enhanced methane recovery from low-concentration coalbed methane by gas hydrate formation in graphite nanofluids," Energy, Elsevier, vol. 180(C), pages 728-736.
    2. Zheng, Junjie & Loganathan, Niranjan Kumar & Zhao, Jianzhong & Linga, Praveen, 2019. "Clathrate hydrate formation of CO2/CH4 mixture at room temperature: Application to direct transport of CO2-containing natural gas," Applied Energy, Elsevier, vol. 249(C), pages 190-203.
    3. Cai, Jing & Xu, Chun-Gang & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen, 2017. "Hydrate-based methane separation from coal mine methane gas mixture by bubbling using the scale-up equipment," Applied Energy, Elsevier, vol. 204(C), pages 1526-1534.
    4. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    5. Hamawand, Ihsan & Yusaf, Talal & Hamawand, Sara G., 2013. "Coal seam gas and associated water: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 550-560.
    6. McGlade, Christophe & Speirs, Jamie & Sorrell, Steve, 2013. "Unconventional gas – A review of regional and global resource estimates," Energy, Elsevier, vol. 55(C), pages 571-584.
    7. Zheng, Junjie & Bhatnagar, Krittika & Khurana, Maninder & Zhang, Peng & Zhang, Bao-Yong & Linga, Praveen, 2018. "Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives," Applied Energy, Elsevier, vol. 217(C), pages 377-389.
    8. Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.
    9. Yang, Mingjun & Zhou, Hang & Wang, Pengfei & Song, Yongchen, 2018. "Effects of additives on continuous hydrate-based flue gas separation," Applied Energy, Elsevier, vol. 221(C), pages 374-385.
    10. Horii, Shunsuke & Ohmura, Ryo, 2018. "Continuous separation of CO2 from a H2 + CO2 gas mixture using clathrate hydrate," Applied Energy, Elsevier, vol. 225(C), pages 78-84.
    11. Xu, Chun-Gang & Yu, Yi-Song & Xie, Wen-Jun & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen, 2019. "Study on developing a novel continuous separation device and carbon dioxide separation by process of hydrate combined with chemical absorption," Applied Energy, Elsevier, vol. 255(C).
    12. Veluswamy, Hari Prakash & Kumar, Asheesh & Kumar, Rajnish & Linga, Praveen, 2017. "An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application," Applied Energy, Elsevier, vol. 188(C), pages 190-199.
    13. Zhong, Dong-Liang & Ding, Kun & Lu, Yi-Yu & Yan, Jin & Zhao, Wei-Long, 2016. "Methane recovery from coal mine gas using hydrate formation in water-in-oil emulsions," Applied Energy, Elsevier, vol. 162(C), pages 1619-1626.
    14. Bhattacharjee, Gaurav & Choudhary, Nilesh & Barmecha, Vivek & Kushwaha, Omkar S. & Pande, Nawal K. & Chugh, Parivesh & Roy, Sudip & Kumar, Rajnish, 2019. "Methane recovery from marine gas hydrates: A bench scale study in presence of low dosage benign additives," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Tomita, Shuhei & Akatsu, Satoru & Ohmura, Ryo, 2015. "Experiments and thermodynamic simulations for continuous separation of CO2 from CH4+CO2 gas mixture utilizing hydrate formation," Applied Energy, Elsevier, vol. 146(C), pages 104-110.
    16. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    17. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    18. Xie, Yingming & Li, Gang & Liu, Daoping & Liu, Ni & Qi, Yingxia & Liang, Deqing & Guo, Kaihua & Fan, Shuanshi, 2010. "Experimental study on a small scale of gas hydrate cold storage apparatus," Applied Energy, Elsevier, vol. 87(11), pages 3340-3346, November.
    19. Bhattacharjee, Gaurav & Prakash Veluswamy, Hari & Kumar, Rajnish & Linga, Praveen, 2020. "Rapid methane storage via sII hydrates at ambient temperature," Applied Energy, Elsevier, vol. 269(C).
    20. Zhong, Dong-Liang & Wang, Wen-Chun & Zou, Zhen-Lin & Lu, Yi-Yu & Yan, Jin & Ding, Kun, 2018. "Investigation on methane recovery from low-concentration coal mine gas by tetra-n-butyl ammonium chloride semiclathrate hydrate formation," Applied Energy, Elsevier, vol. 227(C), pages 686-693.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Zucheng & Li, Shaohua & Liu, Yu & Zhang, Yi & Ling, Zheng & Yang, Mingjun & Jiang, Lanlan & Song, Yongchen, 2022. "Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Cheng, Zucheng & Sun, Lintao & Liu, Yingying & Jiang, Lanlan & Chen, Bingbing & Song, Yongchen, 2023. "Study on the micro-macro kinetic and amino acid-enhanced separation of CO2-CH4 via sII hydrate," Renewable Energy, Elsevier, vol. 218(C).
    3. Kim, Hyunho & Zheng, Junjie & Yin, Zhenyuan & Babu, Ponnivalavan & Kumar, Sreekala & Tee, Jackson & Linga, Praveen, 2023. "Semi-clathrate hydrate slurry as a cold energy storage and transport medium: Rheological study, energy analysis and enhancement by amino acid," Energy, Elsevier, vol. 264(C).
    4. Zhou, Shi-Dong & Xiao, Yan-Yun & Ni, Xing-Ya & Li, Xiao-Yan & Wu, Zhi-Min & Liu, Yang & Lv, Xiao-Fang, 2024. "Kinetics studies of CO2 hydrate formation in the presence of l-methionine coupled with multi-walled carbon nanotubes," Energy, Elsevier, vol. 298(C).
    5. Yiwei Wang & Lin Wang & Zhen Hu & Youli Li & Qiang Sun & Aixian Liu & Lanying Yang & Jing Gong & Xuqiang Guo, 2021. "The Thermodynamic and Kinetic Effects of Sodium Lignin Sulfonate on Ethylene Hydrate Formation," Energies, MDPI, vol. 14(11), pages 1-19, June.
    6. Fares Almomani & Asmaa Othman & Ajinkya Pal & Easa I. Al-Musleh & Iftekhar A. Karimi, 2021. "Prospective of Upfront Nitrogen (N 2 ) Removal in LNG Plants: Technical Communication," Energies, MDPI, vol. 14(12), pages 1-23, June.
    7. Mok, Junghoon & Choi, Wonjung & Seo, Yongwon, 2021. "The dual-functional roles of N2 gas for the exploitation of natural gas hydrates: An inhibitor for dissociation and an external guest for replacement," Energy, Elsevier, vol. 232(C).
    8. Omran, Ahmed & Nesterenko, Nikolay & Valtchev, Valentin, 2022. "Zeolitic ice: A route toward net zero emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Mu, Liang & Zhou, Ziqi & Zhao, Huixing & Zhu, Xiaohai & Cui, Qingyan, 2024. "High-efficiency recovery of methane from coal bed gas via hydrate formation in emulsions," Energy, Elsevier, vol. 290(C).
    10. Cheng, Zucheng & Sun, Lintao & Liu, Yingying & Xu, Huazheng & Jiang, Lanlan & Wang, Lei & Song, Yongchen, 2023. "Multiscale analysis of the effect of the structural transformation of TBAB semi-clathrate hydrate on CO2 capture efficiency," Energy, Elsevier, vol. 280(C).
    11. Zhang, Qiang & Zheng, Junjie & Zhang, Baoyong & Linga, Praveen, 2023. "Kinetic evaluation of hydrate-based coalbed methane recovery process promoted by structure II thermodynamic promoters and amino acids," Energy, Elsevier, vol. 274(C).
    12. Kim, Hyunho & Zheng, Junjie & Yin, Zhenyuan & Kumar, Sreekala & Tee, Jackson & Seo, Yutaek & Linga, Praveen, 2022. "An electrical resistivity-based method for measuring semi-clathrate hydrate formation kinetics: Application for cold storage and transport," Applied Energy, Elsevier, vol. 308(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qiang & Zheng, Junjie & Zhang, Baoyong & Linga, Praveen, 2023. "Kinetic evaluation of hydrate-based coalbed methane recovery process promoted by structure II thermodynamic promoters and amino acids," Energy, Elsevier, vol. 274(C).
    2. Lai, Xi & Zhao, Li & Nie, Xianhua & Zhang, Yue & Zhang, Qi, 2023. "Hydrate-based composition separation of R32/R1234yf mixed working fluids applied in composition-adjustable organic Rankine cycle," Energy, Elsevier, vol. 284(C).
    3. Mu, Liang & Zhou, Ziqi & Zhao, Huixing & Zhu, Xiaohai & Cui, Qingyan, 2024. "High-efficiency recovery of methane from coal bed gas via hydrate formation in emulsions," Energy, Elsevier, vol. 290(C).
    4. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    5. Yan, Jin & Lu, Yi-Yu & Zhong, Dong-Liang & Zou, Zhen-Lin & Li, Jian-Bo, 2019. "Enhanced methane recovery from low-concentration coalbed methane by gas hydrate formation in graphite nanofluids," Energy, Elsevier, vol. 180(C), pages 728-736.
    6. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    7. Bhattacharjee, Gaurav & Prakash Veluswamy, Hari & Kumar, Rajnish & Linga, Praveen, 2020. "Rapid methane storage via sII hydrates at ambient temperature," Applied Energy, Elsevier, vol. 269(C).
    8. Qin, Yue & Shang, Liyan & Lv, Zhenbo & Liu, Zhiming & He, Jianyu & Li, Xu & Binama, Maxime & Yang, Lingyun & Wang, Deyang, 2022. "Rapid formation of methane hydrate in environment-friendly leucine-based complex systems," Energy, Elsevier, vol. 254(PA).
    9. Bhattacharjee, Gaurav & Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2020. "Seawater based mixed methane-THF hydrate formation at ambient temperature conditions," Applied Energy, Elsevier, vol. 271(C).
    10. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    11. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    12. Ren, Liang-Liang & Qi, Ya-Hui & Chen, Jun-Li & Sun, Yi-Fei & Sun, Chang-Yu & Wang, Xiao-Hui & Chen, Guang-Jin & Yuan, Qing & Pang, Wei-Xin & Li, Qing-Ping, 2020. "Dependence of acoustic properties on hydrate-bearing sediments with heterogeneous distribution," Applied Energy, Elsevier, vol. 275(C).
    13. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Xiao, Peng & Dong, Bao-Can & Li, Jia & Zhang, Hong-Liang & Chen, Guang-Jin & Sun, Chang-Yu & Huang, Xing, 2022. "An approach to highly efficient filtration of methane hydrate slurry for the continuous hydrate production," Energy, Elsevier, vol. 259(C).
    15. Xu, Chun-Gang & Xie, Wen-Jun & Chen, Guo-Shu & Yan, Xiao-Xue & Cai, Jing & Chen, Zhao-Yang & Li, Xiao-Sen, 2020. "Study on the influencing factors of gas consumption in hydrate-based CO2 separation in the presence of CP by Raman analysis," Energy, Elsevier, vol. 198(C).
    16. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    17. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 Gas hydrate for carbon capture and storage applications – Part 1," Energy, Elsevier, vol. 300(C).
    18. Ouyang, Qian & Zheng, Junjie & Pandey, Jyoti Shanker & von Solms, Nicolas & Linga, Praveen, 2024. "Coupling amino acid injection and slow depressurization with hydrate swapping exploitation: An effective strategy to enhance in-situ CO2 storage in hydrate-bearing sediment," Applied Energy, Elsevier, vol. 366(C).
    19. Ge, Bin-Bin & Li, Xi-Yue & Zhong, Dong-Liang & Lu, Yi-Yu, 2022. "Investigation of natural gas storage and transportation by gas hydrate formation in the presence of bio-surfactant sulfonated lignin," Energy, Elsevier, vol. 244(PA).
    20. Kim, Kwangbum & Truong-Lam, Hai Son & Lee, Ju Dong & Sa, Jeong-Hoon, 2023. "Facilitating clathrate hydrates with extremely rapid and high gas uptake for chemical-free carbon capture and methane storage," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:287:y:2021:i:c:s0306261921001227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.