IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v196y2020ics0360544220301961.html
   My bibliography  Save this article

Performance comparison between rectangular and trapezoidal-shaped thermoelectric legs manufactured by a dispenser printing technique

Author

Listed:
  • Mohammad Siddique, Abu Raihan
  • Mahmud, Shohel
  • Van Heyst, Bill

Abstract

At present, device engineering has been limited to the rectangular-shaped TE leg. Therefore, a trapezoidal-shaped leg has been proposed for the TE system and prototypes are developed in this work. Performance comparison has been investigated between rectangular and proposed trapezoidal-shaped leg based TE prototypes. The n-type (0.98Bi,0.02Sb)2(0.9Te,0.1Se)3 and p-type (0.25Bi,0.75Sb)2(0.95Te,0.05Se)3 are considered as base material with Durabond-950 binder material to manufacture TE legs by using a cost-effective dispenser printing technology. The current study includes analysis of SEM imaging, characterization of manufactured TE legs, various experimental tests on TE prototypes, comparison between analytical and experimental results, and cost analyses. For the given restricted volume envelope, the trapezoidal-shaped TE prototype generates 1.24 times more voltage and 1.5 times more power when compared to the rectangular-shaped prototype at 30 °C hot side temperature when the cold side is exposed to the surrounding. For a given constant temperature boundary conditions (i.e., ΔT = 10 °C), the rectangular-shaped TE prototype harvests 1.4 times more power than the trapezoidal-shaped one, while the power density for rectangular TE prototype (i.e., 0.37 W/m3) is almost the same as trapezoidal one (i.e., 0.36 W/m3). Furthermore, the proposed trapezoidal-shaped prototype uses 28.6% less material by mass than the rectangular prototype.

Suggested Citation

  • Mohammad Siddique, Abu Raihan & Mahmud, Shohel & Van Heyst, Bill, 2020. "Performance comparison between rectangular and trapezoidal-shaped thermoelectric legs manufactured by a dispenser printing technique," Energy, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301961
    DOI: 10.1016/j.energy.2020.117089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220301961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yancheng & Shi, Yaoguang & Mei, Deqing & Chen, Zichen, 2018. "Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer," Applied Energy, Elsevier, vol. 215(C), pages 690-698.
    2. Lundgaard, Christian & Sigmund, Ole, 2019. "Design of segmented off-diagonal thermoelectric generators using topology optimization," Applied Energy, Elsevier, vol. 236(C), pages 950-960.
    3. Gou, Xiaolong & Yang, Suwen & Xiao, Heng & Ou, Qiang, 2013. "A dynamic model for thermoelectric generator applied in waste heat recovery," Energy, Elsevier, vol. 52(C), pages 201-209.
    4. Pourkiaei, Seyed Mohsen & Ahmadi, Mohammad Hossein & Sadeghzadeh, Milad & Moosavi, Soroush & Pourfayaz, Fathollah & Chen, Lingen & Pour Yazdi, Mohammad Arab & Kumar, Ravinder, 2019. "Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials," Energy, Elsevier, vol. 186(C).
    5. Siddique, Abu Raihan Mohammad & Rabari, Ronil & Mahmud, Shohel & Heyst, Bill Van, 2016. "Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique," Energy, Elsevier, vol. 115(P1), pages 1081-1091.
    6. Dunham, Marc T. & Barako, Michael T. & LeBlanc, Saniya & Asheghi, Mehdi & Chen, Baoxing & Goodson, Kenneth E., 2015. "Power density optimization for micro thermoelectric generators," Energy, Elsevier, vol. 93(P2), pages 2006-2017.
    7. Gao, Mingyuan & Su, Chengguang & Cong, Jianli & Yang, Fan & Wang, Yifeng & Wang, Ping, 2019. "Harvesting thermoelectric energy from railway track," Energy, Elsevier, vol. 180(C), pages 315-329.
    8. Li, Gang & Qian, Suxin & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard, 2014. "Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application," Energy, Elsevier, vol. 65(C), pages 675-691.
    9. Fan, Shifa & Gao, Yuanwen, 2019. "Numerical analysis on the segmented annular thermoelectric generator for waste heat recovery," Energy, Elsevier, vol. 183(C), pages 35-47.
    10. Siddique, Abu Raihan Mohammad & Mahmud, Shohel & Heyst, Bill Van, 2017. "A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 730-744.
    11. Li, Gang & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2013. "Review of cold storage materials for subzero applications," Energy, Elsevier, vol. 51(C), pages 1-17.
    12. Nguyen Huu, Trung & Nguyen Van, Toan & Takahito, Ono, 2018. "Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process," Applied Energy, Elsevier, vol. 210(C), pages 467-476.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalil, ALkhadher & Elhassnaoui, Ahmed & Yadir, Said & Abdellatif, Obbadi & Errami, Youssef & Sahnoun, Smail, 2021. "Performance comparison of TEGs for diverse variable leg geometry with the same leg volume," Energy, Elsevier, vol. 224(C).
    2. Tianbo Lu & Yuqiang Li & Jianxin Zhang & Pingfan Ning & Pingjuan Niu, 2020. "Cooling and Mechanical Performance Analysis of a Trapezoidal Thermoelectric Cooler with Variable Cross-Section," Energies, MDPI, vol. 13(22), pages 1-19, November.
    3. Alghamdi, Hisham & Maduabuchi, Chika & Okoli, Kingsley & Albaker, Abdullah & Makki, Emad & Alghassab, Mohammed & Alobaid, Mohammad & Alkhedher, Mohammad, 2023. "Pioneering sustainable power: Harnessing material innovations in double stage segmented thermoelectric generators for optimal 4E performance," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siddique, Abu Raihan Mohammad & Rabari, Ronil & Mahmud, Shohel & Heyst, Bill Van, 2016. "Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique," Energy, Elsevier, vol. 115(P1), pages 1081-1091.
    2. Yuan, Jinfeng & Zhu, Rong, 2020. "A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator," Applied Energy, Elsevier, vol. 271(C).
    3. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    4. Song Lv & Zuoqin Qian & Dengyun Hu & Xiaoyuan Li & Wei He, 2020. "A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module," Energies, MDPI, vol. 13(12), pages 1-24, June.
    5. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    6. Lee, Dongkeon & Park, Hwanjoo & Park, Gimin & Kim, Jiyong & Kim, Hoon & Cho, Hanki & Han, Seungwoo & Kim, Woochul, 2019. "Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device," Energy, Elsevier, vol. 188(C).
    7. Nozariasbmarz, Amin & Collins, Henry & Dsouza, Kelvin & Polash, Mobarak Hossain & Hosseini, Mahshid & Hyland, Melissa & Liu, Jie & Malhotra, Abhishek & Ortiz, Francisco Matos & Mohaddes, Farzad & Rame, 2020. "Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems," Applied Energy, Elsevier, vol. 258(C).
    8. Hasan, Mohammed Nazibul & Nayan, Nafarizal & Nafea, Marwan & Muthalif, Asan G.A. & Mohamed Ali, Mohamed Sultan, 2022. "Novel structural design of wearable thermoelectric generator with vertically oriented thermoelements," Energy, Elsevier, vol. 259(C).
    9. Sargolzaeiaval, Yasaman & Padmanabhan Ramesh, Viswanath & Neumann, Taylor V. & Misra, Veena & Vashaee, Daryoosh & Dickey, Michael D. & Öztürk, Mehmet C., 2020. "Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects," Applied Energy, Elsevier, vol. 262(C).
    10. We, Ju Hyung & Kim, Sun Jin & Cho, Byung Jin, 2014. "Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator," Energy, Elsevier, vol. 73(C), pages 506-512.
    11. Fan, Shifa & Gao, Yuanwen & Rezania, Alireza, 2021. "Thermoelectric performance and stress analysis on wearable thermoelectric generator under bending load," Renewable Energy, Elsevier, vol. 173(C), pages 581-595.
    12. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    13. Kishore, T.S. & Singal, S.K., 2014. "Optimal economic planning of power transmission lines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 949-974.
    14. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Dong, Liwei & Zuo, Jianyong & Wang, Tianpeng & Xue, Wenbin & Wang, Ping & Li, Jun & Yang, Fan, 2022. "Enhanced piezoelectric harvester for track vibration based on tunable broadband resonant methodology," Energy, Elsevier, vol. 254(PA).
    16. Jingchao, Zhang & Kotani, Koji & Saijo, Tatsuyoshi, 2019. "Low-quality or high-quality coal? Household energy choice in rural Beijing," Energy Economics, Elsevier, vol. 78(C), pages 81-90.
    17. Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Advanced exergy analysis of an air conditioning system incorporating thermal energy storage," Energy, Elsevier, vol. 77(C), pages 945-952.
    18. Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).
    19. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    20. Kumar, N.J. Vinoth & Thameem Ansari, M. Mohamed, 2015. "A new design of dual-mode Type-II fuzzy logic load frequency controller for interconnected power systems with parallel AC–DC tie-lines and superconducting magnetic energy storage unit," Energy, Elsevier, vol. 89(C), pages 118-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.