IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v194y2020ics0360544219325290.html
   My bibliography  Save this article

On the accuracy improvement of thermoeconomic diagnosis through exergy disaggregation and dissipative equipment isolation

Author

Listed:
  • Amorim Lorenzoni, Raphael
  • Conceição Soares Santos, José Joaquim
  • Barbosa Lourenço, Atilio
  • Marcon Donatelli, João Luiz

Abstract

Thermoeconomics join the concepts of Economics and Thermodynamics in order to describe the cost formation process of the overall thermal system. It has great applicability in product cost allocation, optimisation, and diagnosis, aiming to reduce operating costs and to prove a system’s economic feasibility. Thermoeconomic diagnosis is applied to identify the source of extra fuel consumption in each system element. In this study, a power generation system and a heat pump, each with different simulated anomalies, are evaluated by five distinct thermoeconomic models based on productive diagrams (E, E&S, H&S, UFS and UFS+) combined with the fuel impact formula, focusing on its efficiency to quantify the effects of each malfunction with the presence of a dissipative component. For the power generation, the H&S and UFS models presented satisfactory results in correctly identifying the faulty component, whereas, in the heat pump system, the fictitious unities from the productive diagram interfered with the results, inhibiting the determination of the element with an intrinsic fault. Moreover, the UFS and UFS+ models were able to isolate all equipment in the productive diagram for the latter system.

Suggested Citation

  • Amorim Lorenzoni, Raphael & Conceição Soares Santos, José Joaquim & Barbosa Lourenço, Atilio & Marcon Donatelli, João Luiz, 2020. "On the accuracy improvement of thermoeconomic diagnosis through exergy disaggregation and dissipative equipment isolation," Energy, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325290
    DOI: 10.1016/j.energy.2019.116834
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219325290
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. da Silva, Julio Augusto Mendes & Santos, José Joaquim Conceição Soares & Carvalho, Monica & de Oliveira, Silvio, 2017. "On the thermoeconomic and LCA methods for waste and fuel allocation in multiproduct systems," Energy, Elsevier, vol. 127(C), pages 775-785.
    2. Zaleta-Aguilar, Alejandro & Olivares-Arriaga, Abraham & Cano-Andrade, Sergio & Rodriguez-Alejandro, David A., 2016. "β-characterization by irreversibility analysis: A thermoeconomic diagnosis method," Energy, Elsevier, vol. 111(C), pages 850-858.
    3. Silva, J.A.M. & Venturini, O.J. & Lora, E.E.S. & Pinho, A.F. & Santos, J.J.C.S., 2011. "Thermodynamic information system for diagnosis and prognosis of power plant operation condition," Energy, Elsevier, vol. 36(7), pages 4072-4079.
    4. Lazzaretto, A. & Toffolo, A. & Reini, M. & Taccani, R. & Zaleta-Aguilar, A. & Rangel-Hernandez, V. & Verda, V., 2006. "Four approaches compared on the TADEUS (thermoeconomic approach to the diagnosis of energy utility systems) test case," Energy, Elsevier, vol. 31(10), pages 1586-1613.
    5. Kharseh, Mohamad & Altorkmany, Lobna & Nordell, Bo, 2011. "Global warming’s impact on the performance of GSHP," Renewable Energy, Elsevier, vol. 36(5), pages 1485-1491.
    6. dos Santos, Rodrigo G. & de Faria, Pedro R. & Santos, José J.C.S. & da Silva, Julio A.M. & Flórez-Orrego, Daniel, 2016. "Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems," Energy, Elsevier, vol. 117(P2), pages 590-603.
    7. Orozco, Dimas José Rúa & Venturini, Osvaldo José & Escobar Palacio, José Carlos & del Olmo, Oscar Almazán, 2017. "A new methodology of thermodynamic diagnosis, using the thermoeconomic method together with an artificial neural network (ANN): A case study of an externally fired gas turbine (EFGT)," Energy, Elsevier, vol. 123(C), pages 20-35.
    8. Usón, Sergio & Valero, Antonio, 2011. "Thermoeconomic diagnosis for improving the operation of energy intensive systems: Comparison of methods," Applied Energy, Elsevier, vol. 88(3), pages 699-711, March.
    9. Zaleta, Alejandro & Chavez, J.Paulo & Pacheco, J.Jesus & Santos, Adrian & Campos, Alfonso & Gallegos, Armando, 2007. "Concepts on dynamic reference state, acceptable performance tests, and the equalized reconciliation method as a strategy for a reliable on-line thermoeconomic monitoring and diagnosis," Energy, Elsevier, vol. 32(4), pages 499-507.
    10. Valero, Antonio & Correas, Luis & Zaleta, Alejandro & Lazzaretto, Andrea & Verda, Vittorio & Reini, Mauro & Rangel, Victor, 2004. "On the thermoeconomic approach to the diagnosis of energy system malfunctions," Energy, Elsevier, vol. 29(12), pages 1875-1887.
    11. Verda, Vittorio, 2006. "Accuracy level in thermoeconomic diagnosis of energy systems," Energy, Elsevier, vol. 31(15), pages 3248-3260.
    12. Torres, C. & Valero, A. & Rangel, V. & Zaleta, A., 2008. "On the cost formation process of the residues," Energy, Elsevier, vol. 33(2), pages 144-152.
    13. Valero, Antonio & Correas, Luis & Zaleta, Alejandro & Lazzaretto, Andrea & Verda, Vittorio & Reini, Mauro & Rangel, Victor, 2004. "On the thermoeconomic approach to the diagnosis of energy system malfunctions," Energy, Elsevier, vol. 29(12), pages 1889-1907.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Usón, Sergio & Valero, Antonio, 2011. "Thermoeconomic diagnosis for improving the operation of energy intensive systems: Comparison of methods," Applied Energy, Elsevier, vol. 88(3), pages 699-711, March.
    2. Silva, J.A.M. & Venturini, O.J. & Lora, E.E.S. & Pinho, A.F. & Santos, J.J.C.S., 2011. "Thermodynamic information system for diagnosis and prognosis of power plant operation condition," Energy, Elsevier, vol. 36(7), pages 4072-4079.
    3. Mendes, Tiago & Venturini, Osvaldo José & da Silva, Julio Augusto Mendes & Orozco, Dimas José Rúa & Pirani, Marcelo José, 2020. "Disaggregation models for the thermoeconomic diagnosis of a vapor compression refrigeration system," Energy, Elsevier, vol. 193(C).
    4. Orozco, Dimas José Rúa & Venturini, Osvaldo José & Escobar Palacio, José Carlos & del Olmo, Oscar Almazán, 2017. "A new methodology of thermodynamic diagnosis, using the thermoeconomic method together with an artificial neural network (ANN): A case study of an externally fired gas turbine (EFGT)," Energy, Elsevier, vol. 123(C), pages 20-35.
    5. Antonio Valero & César Torres, 2023. "Application of Circular Thermoeconomics to the Diagnosis of Energy Systems," Energies, MDPI, vol. 16(18), pages 1-23, September.
    6. Usón, Sergio & Valero, Antonio & Correas, Luis, 2010. "Energy efficiency assessment and improvement in energy intensive systems through thermoeconomic diagnosis of the operation," Applied Energy, Elsevier, vol. 87(6), pages 1989-1995, June.
    7. Usón, Sergio & Valero, Antonio & Agudelo, Andrés, 2012. "Thermoeconomics and Industrial Symbiosis. Effect of by-product integration in cost assessment," Energy, Elsevier, vol. 45(1), pages 43-51.
    8. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    9. César Torres & Antonio Valero, 2021. "The Exergy Cost Theory Revisited," Energies, MDPI, vol. 14(6), pages 1-42, March.
    10. Valero, Antonio & Usón, Sergio & Torres, César & Valero, Alicia & Agudelo, Andrés & Costa, Jorge, 2013. "Thermoeconomic tools for the analysis of eco-industrial parks," Energy, Elsevier, vol. 62(C), pages 62-72.
    11. Picallo-Perez, Ana & Sala-Lizarraga, José M. & Portillo-Valdes, Luis, 2022. "Development of a tool based on thermoeconomics for control and diagnosis building thermal facilities," Energy, Elsevier, vol. 239(PD).
    12. da Silva, Julio A.M. & de Oliveira Junior, S., 2018. "Unit exergy cost and CO2 emissions of offshore petroleum production," Energy, Elsevier, vol. 147(C), pages 757-766.
    13. Kostowski, Wojciech J. & Usón, Sergio & Stanek, Wojciech & Bargiel, Paweł, 2014. "Thermoecological cost of electricity production in the natural gas pressure reduction process," Energy, Elsevier, vol. 76(C), pages 10-18.
    14. Antonio Valero & César Torres, 2020. "Relative Free Energy Function and Structural Theory of Thermoeconomics," Energies, MDPI, vol. 13(8), pages 1-21, April.
    15. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
    16. Cafaro, S. & Napoli, L. & Traverso, A. & Massardo, A.F., 2010. "Monitoring of the thermoeconomic performance in an actual combined cycle power plant bottoming cycle," Energy, Elsevier, vol. 35(2), pages 902-910.
    17. Yunpeng Cao & Xinran Lv & Guodong Han & Junqi Luan & Shuying Li, 2019. "Research on Gas-Path Fault-Diagnosis Method of Marine Gas Turbine Based on Exergy Loss and Probabilistic Neural Network," Energies, MDPI, vol. 12(24), pages 1-17, December.
    18. Piacentino, Antonio & Cardona, Fabio, 2010. "Scope-Oriented Thermoeconomic analysis of energy systems. Part I: Looking for a non-postulated cost accounting for the dissipative devices of a vapour compression chiller. Is it feasible?," Applied Energy, Elsevier, vol. 87(3), pages 943-956, March.
    19. Morosuk, T. & Tsatsaronis, G., 2009. "Advanced exergetic evaluation of refrigeration machines using different working fluids," Energy, Elsevier, vol. 34(12), pages 2248-2258.
    20. Torres, César & Valero, Antonio & Valero, Alicia, 2013. "Exergoecology as a tool for ecological modelling. The case of the US food production chain," Ecological Modelling, Elsevier, vol. 255(C), pages 21-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.