IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i3p699-711.html
   My bibliography  Save this article

Thermoeconomic diagnosis for improving the operation of energy intensive systems: Comparison of methods

Author

Listed:
  • Usón, Sergio
  • Valero, Antonio

Abstract

The aim of thermoeconomic diagnosis of operating energy intensive systems is the determination of fuel consumption, the identification of the causes of its increment from design conditions and the quantification of the effect of each one of these causes. For this task, besides data acquisition and monitoring systems, a thermoeconomic diagnosis methodology is needed. After a review of methodologies, three of them are compared: quantitative causality analysis, linear regression and neural networks. These methods are based on thermodynamic indicators (more close to daily operation) instead of thermoeconomic parameters (which allow a homogeneous formulation); however, the first one is based on a thermodynamic description of the system, while the others are empirical. The comparison is based on the diagnosis of a 3 x 350 MW coal-fired-power plant for a time span of more than 6 years. Results show that quantitative causality analysis is able to quantify the effects of all variables while the others are only suitable for the most influential ones.

Suggested Citation

  • Usón, Sergio & Valero, Antonio, 2011. "Thermoeconomic diagnosis for improving the operation of energy intensive systems: Comparison of methods," Applied Energy, Elsevier, vol. 88(3), pages 699-711, March.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:3:p:699-711
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00374-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lazzaretto, A. & Toffolo, A. & Reini, M. & Taccani, R. & Zaleta-Aguilar, A. & Rangel-Hernandez, V. & Verda, V., 2006. "Four approaches compared on the TADEUS (thermoeconomic approach to the diagnosis of energy utility systems) test case," Energy, Elsevier, vol. 31(10), pages 1586-1613.
    2. Pacheco Ibarra, J.J. & Rangel Hernández, V.H. & Zaleta Aguilar, A. & Valero, A., 2010. "Hybrid Fuel Impact Reconciliation Method: An integral tool for thermoeconomic diagnosis," Energy, Elsevier, vol. 35(5), pages 2079-2087.
    3. Fast, M. & Palmé, T., 2010. "Application of artificial neural networks to the condition monitoring and diagnosis of a combined heat and power plant," Energy, Elsevier, vol. 35(2), pages 1114-1120.
    4. Ozgener, Leyla & Ozgener, Onder, 2009. "Monitoring of energy exergy efficiencies and exergoeconomic parameters of geothermal district heating systems (GDHSs)," Applied Energy, Elsevier, vol. 86(9), pages 1704-1711, September.
    5. Usón, Sergio & Valero, Antonio & Correas, Luis, 2010. "Energy efficiency assessment and improvement in energy intensive systems through thermoeconomic diagnosis of the operation," Applied Energy, Elsevier, vol. 87(6), pages 1989-1995, June.
    6. Rusinowski, Henryk & Stanek, Wojciech, 2010. "Hybrid model of steam boiler," Energy, Elsevier, vol. 35(2), pages 1107-1113.
    7. Barelli, L. & Bidini, G. & Bonucci, F., 2009. "Diagnosis methodology for the turbocharger groups installed on a 1Â MW internal combustion engine," Applied Energy, Elsevier, vol. 86(12), pages 2721-2730, December.
    8. Zaleta-Aguilar, Alejandro & Royo, Javier & Rangel, Victor H. & Torres-Reyes, Ernestina, 2004. "Thermo-characterization of power systems components: a tool to diagnose their malfunctions," Energy, Elsevier, vol. 29(3), pages 361-377.
    9. Zaleta, Alejandro & Chavez, J.Paulo & Pacheco, J.Jesus & Santos, Adrian & Campos, Alfonso & Gallegos, Armando, 2007. "Concepts on dynamic reference state, acceptable performance tests, and the equalized reconciliation method as a strategy for a reliable on-line thermoeconomic monitoring and diagnosis," Energy, Elsevier, vol. 32(4), pages 499-507.
    10. Verda, Vittorio & Borchiellini, Romano, 2004. "Exergetic and economic evaluation of control strategies for a gas turbine plant," Energy, Elsevier, vol. 29(12), pages 2253-2271.
    11. Valero, Antonio & Correas, Luis & Zaleta, Alejandro & Lazzaretto, Andrea & Verda, Vittorio & Reini, Mauro & Rangel, Victor, 2004. "On the thermoeconomic approach to the diagnosis of energy system malfunctions," Energy, Elsevier, vol. 29(12), pages 1875-1887.
    12. Verda, Vittorio, 2008. "Prediction of the fuel impact associated with performance degradation in power plants," Energy, Elsevier, vol. 33(2), pages 213-223.
    13. Verda, Vittorio & Serra, Luis & Valero, Antonio, 2004. "The effects of the control system on the thermoeconomic diagnosis of a power plant," Energy, Elsevier, vol. 29(3), pages 331-359.
    14. Verda, Vittorio, 2006. "Accuracy level in thermoeconomic diagnosis of energy systems," Energy, Elsevier, vol. 31(15), pages 3248-3260.
    15. Torres, C. & Valero, A. & Rangel, V. & Zaleta, A., 2008. "On the cost formation process of the residues," Energy, Elsevier, vol. 33(2), pages 144-152.
    16. Verda, Vittorio & Borchiellini, Romano, 2007. "Exergy method for the diagnosis of energy systems using measured data," Energy, Elsevier, vol. 32(4), pages 490-498.
    17. Valero, Antonio & Correas, Luis & Zaleta, Alejandro & Lazzaretto, Andrea & Verda, Vittorio & Reini, Mauro & Rangel, Victor, 2004. "On the thermoeconomic approach to the diagnosis of energy system malfunctions," Energy, Elsevier, vol. 29(12), pages 1889-1907.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amorim Lorenzoni, Raphael & Conceição Soares Santos, José Joaquim & Barbosa Lourenço, Atilio & Marcon Donatelli, João Luiz, 2020. "On the accuracy improvement of thermoeconomic diagnosis through exergy disaggregation and dissipative equipment isolation," Energy, Elsevier, vol. 194(C).
    2. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    3. Orozco, Dimas José Rúa & Venturini, Osvaldo José & Escobar Palacio, José Carlos & del Olmo, Oscar Almazán, 2017. "A new methodology of thermodynamic diagnosis, using the thermoeconomic method together with an artificial neural network (ANN): A case study of an externally fired gas turbine (EFGT)," Energy, Elsevier, vol. 123(C), pages 20-35.
    4. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
    5. Blanco, J.M. & Vazquez, L. & Peña, F. & Diaz, D., 2013. "New investigation on diagnosing steam production systems from multivariate time series applied to thermal power plants," Applied Energy, Elsevier, vol. 101(C), pages 589-599.
    6. Najjar, Yousef S.H. & Al-Absi, Suhayb, 2013. "Thermoeconomic optimization for green multi-shaft gas turbine engines," Energy, Elsevier, vol. 56(C), pages 39-45.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, J.A.M. & Venturini, O.J. & Lora, E.E.S. & Pinho, A.F. & Santos, J.J.C.S., 2011. "Thermodynamic information system for diagnosis and prognosis of power plant operation condition," Energy, Elsevier, vol. 36(7), pages 4072-4079.
    2. Orozco, Dimas José Rúa & Venturini, Osvaldo José & Escobar Palacio, José Carlos & del Olmo, Oscar Almazán, 2017. "A new methodology of thermodynamic diagnosis, using the thermoeconomic method together with an artificial neural network (ANN): A case study of an externally fired gas turbine (EFGT)," Energy, Elsevier, vol. 123(C), pages 20-35.
    3. Amorim Lorenzoni, Raphael & Conceição Soares Santos, José Joaquim & Barbosa Lourenço, Atilio & Marcon Donatelli, João Luiz, 2020. "On the accuracy improvement of thermoeconomic diagnosis through exergy disaggregation and dissipative equipment isolation," Energy, Elsevier, vol. 194(C).
    4. Usón, Sergio & Valero, Antonio & Correas, Luis, 2010. "Energy efficiency assessment and improvement in energy intensive systems through thermoeconomic diagnosis of the operation," Applied Energy, Elsevier, vol. 87(6), pages 1989-1995, June.
    5. Blanco, Jesús M. & Vazquez, L. & Peña, F., 2012. "Investigation on a new methodology for thermal power plant assessment through live diagnosis monitoring of selected process parameters; application to a case study," Energy, Elsevier, vol. 42(1), pages 170-180.
    6. Zaleta-Aguilar, Alejandro & Olivares-Arriaga, Abraham & Cano-Andrade, Sergio & Rodriguez-Alejandro, David A., 2016. "β-characterization by irreversibility analysis: A thermoeconomic diagnosis method," Energy, Elsevier, vol. 111(C), pages 850-858.
    7. Mendes, Tiago & Venturini, Osvaldo José & da Silva, Julio Augusto Mendes & Orozco, Dimas José Rúa & Pirani, Marcelo José, 2020. "Disaggregation models for the thermoeconomic diagnosis of a vapor compression refrigeration system," Energy, Elsevier, vol. 193(C).
    8. Cafaro, S. & Napoli, L. & Traverso, A. & Massardo, A.F., 2010. "Monitoring of the thermoeconomic performance in an actual combined cycle power plant bottoming cycle," Energy, Elsevier, vol. 35(2), pages 902-910.
    9. Usón, Sergio & Valero, Antonio & Agudelo, Andrés, 2012. "Thermoeconomics and Industrial Symbiosis. Effect of by-product integration in cost assessment," Energy, Elsevier, vol. 45(1), pages 43-51.
    10. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    11. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    12. Verda, Vittorio & Borchiellini, Romano, 2007. "Exergy method for the diagnosis of energy systems using measured data," Energy, Elsevier, vol. 32(4), pages 490-498.
    13. Verda, Vittorio, 2006. "Accuracy level in thermoeconomic diagnosis of energy systems," Energy, Elsevier, vol. 31(15), pages 3248-3260.
    14. Valero, Antonio & Usón, Sergio & Torres, César & Valero, Alicia & Agudelo, Andrés & Costa, Jorge, 2013. "Thermoeconomic tools for the analysis of eco-industrial parks," Energy, Elsevier, vol. 62(C), pages 62-72.
    15. Kostowski, Wojciech J. & Usón, Sergio & Stanek, Wojciech & Bargiel, Paweł, 2014. "Thermoecological cost of electricity production in the natural gas pressure reduction process," Energy, Elsevier, vol. 76(C), pages 10-18.
    16. Antonio Valero & César Torres, 2023. "Application of Circular Thermoeconomics to the Diagnosis of Energy Systems," Energies, MDPI, vol. 16(18), pages 1-23, September.
    17. Antonio Valero & César Torres, 2020. "Relative Free Energy Function and Structural Theory of Thermoeconomics," Energies, MDPI, vol. 13(8), pages 1-21, April.
    18. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
    19. César Torres & Antonio Valero, 2021. "The Exergy Cost Theory Revisited," Energies, MDPI, vol. 14(6), pages 1-42, March.
    20. Yunpeng Cao & Xinran Lv & Guodong Han & Junqi Luan & Shuying Li, 2019. "Research on Gas-Path Fault-Diagnosis Method of Marine Gas Turbine Based on Exergy Loss and Probabilistic Neural Network," Energies, MDPI, vol. 12(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:3:p:699-711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.