IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v127y2017icp775-785.html
   My bibliography  Save this article

On the thermoeconomic and LCA methods for waste and fuel allocation in multiproduct systems

Author

Listed:
  • da Silva, Julio Augusto Mendes
  • Santos, José Joaquim Conceição Soares
  • Carvalho, Monica
  • de Oliveira, Silvio

Abstract

The search for more efficient processes is mandatory in current society to save resources and avoid further environmental damages. Life Cycle Assessment, LCA, has become an important tool in evaluating the waste generated and resources necessary to produce a given product so that it can be compared with alternative products from energy and environmental points of view. In multiproduct energy systems, the allocation of resources and waste by methods traditionally utilized in LCA studies seems arbitrary. Thermoeconomic theories are well known for the rational allocation of waste and resources in multiproduct plants. This paper compares five allocation techniques usually applied in LCA studies with three thermoeconomic allocation techniques for pollutants (CO2, NOx and SOx) and resources (fuel consumption). The comparison revealed that commonly applied methods for the allocation of emissions in LCA studies provided wide variation between results (over 88%). Thermoeconomic methods, in turn, provided less variation and yielded a more rational approach as the multiproduct step was disaggregated into its subsystems. Thermoeconomic approaches seem to be a perfect match to LCA when multiproduct systems have to be considered. Thus, merging thermoeconomics and LCA methodologies provides a deeper and more rational perspective for complex systems via an integrated analysis.

Suggested Citation

  • da Silva, Julio Augusto Mendes & Santos, José Joaquim Conceição Soares & Carvalho, Monica & de Oliveira, Silvio, 2017. "On the thermoeconomic and LCA methods for waste and fuel allocation in multiproduct systems," Energy, Elsevier, vol. 127(C), pages 775-785.
  • Handle: RePEc:eee:energy:v:127:y:2017:i:c:p:775-785
    DOI: 10.1016/j.energy.2017.03.147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217305406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.03.147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Urošević, Dragan & Gvozdenac, Dušan & Grković, Vojin, 2013. "Calculation of the power loss coefficient of steam turbine as a part of the cogeneration plant," Energy, Elsevier, vol. 59(C), pages 642-651.
    2. Carvalho, Monica & Serra, Luis Maria & Lozano, Miguel Angel, 2011. "Optimal synthesis of trigeneration systems subject to environmental constraints," Energy, Elsevier, vol. 36(6), pages 3779-3790.
    3. Holmberg, Henrik & Tuomaala, Mari & Haikonen, Turo & Ahtila, Pekka, 2012. "Allocation of fuel costs and CO2-emissions to heat and power in an industrial CHP plant: Case integrated pulp and paper mill," Applied Energy, Elsevier, vol. 93(C), pages 614-623.
    4. dos Santos, Rodrigo G. & de Faria, Pedro R. & Santos, José J.C.S. & da Silva, Julio A.M. & Flórez-Orrego, Daniel, 2016. "Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems," Energy, Elsevier, vol. 117(P2), pages 590-603.
    5. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    6. von Spakovsky, Michael R., 1994. "Application of engineering functional analysis to the analysis and optimization of the CGAM problem," Energy, Elsevier, vol. 19(3), pages 343-364.
    7. Frangopoulos, Christos A., 1987. "Thermo-economic functional analysis and optimization," Energy, Elsevier, vol. 12(7), pages 563-571.
    8. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    9. Graus, Wina & Worrell, Ernst, 2011. "Methods for calculating CO2 intensity of power generation and consumption: A global perspective," Energy Policy, Elsevier, vol. 39(2), pages 613-627, February.
    10. Verbruggen, Aviel, 1983. "Cogeneration -- allocation of joint costs," Energy Policy, Elsevier, vol. 11(2), pages 171-176, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. César Torres & Antonio Valero, 2021. "The Exergy Cost Theory Revisited," Energies, MDPI, vol. 14(6), pages 1-42, March.
    2. da Silva, Julio A.M. & de Oliveira Junior, S., 2018. "Unit exergy cost and CO2 emissions of offshore petroleum production," Energy, Elsevier, vol. 147(C), pages 757-766.
    3. Amorim Lorenzoni, Raphael & Conceição Soares Santos, José Joaquim & Barbosa Lourenço, Atilio & Marcon Donatelli, João Luiz, 2020. "On the accuracy improvement of thermoeconomic diagnosis through exergy disaggregation and dissipative equipment isolation," Energy, Elsevier, vol. 194(C).
    4. Ma, Xin & Zhang, Chenghui & Li, Ke & Li, Fan & Wang, Haiyang & Chen, Jianfei, 2020. "Optimal dispatching strategy of regional micro energy system with compressed air energy storage," Energy, Elsevier, vol. 212(C).
    5. Brown, Alastair & Foley, Aoife & Laverty, David & McLoone, Seán & Keatley, Patrick, 2022. "Heating and cooling networks: A comprehensive review of modelling approaches to map future directions," Energy, Elsevier, vol. 261(PB).
    6. Silva Ortiz, Pablo & Flórez-Orrego, Daniel & de Oliveira Junior, Silvio & Maciel Filho, Rubens & Osseweijer, Patricia & Posada, John, 2020. "Unit exergy cost and specific CO2 emissions of the electricity generation in the Netherlands," Energy, Elsevier, vol. 208(C).
    7. Violeta Motuzienė & Kęstutis Čiuprinskas & Artur Rogoža & Vilūnė Lapinskienė, 2022. "A Review of the Life Cycle Analysis Results for Different Energy Conversion Technologies," Energies, MDPI, vol. 15(22), pages 1-26, November.
    8. Flórez-Orrego, Daniel & Henriques, Izabela B. & Nguyen, Tuong-Van & Mendes da Silva, Julio A. & Keutenedjian Mady, Carlos E. & Pellegrini, Luiz Felipe & Gandolfi, Ricardo & Velasquez, Hector I. & Burb, 2018. "The contributions of Prof. Jan Szargut to the exergy and environmental assessment of complex energy systems," Energy, Elsevier, vol. 161(C), pages 482-492.
    9. Marques, Adriano S. & Carvalho, Monica & Ochoa, Alvaro A.V. & Abrahão, Raphael & Santos, Carlos A.C., 2021. "Life cycle assessment and comparative exergoenvironmental evaluation of a micro-trigeneration system," Energy, Elsevier, vol. 216(C).
    10. Picallo-Perez, Ana & Sala-Lizarraga, José M. & Portillo-Valdes, Luis, 2022. "Development of a tool based on thermoeconomics for control and diagnosis building thermal facilities," Energy, Elsevier, vol. 239(PD).
    11. Pavel Atănăsoae, 2022. "Allocation of Joint Costs and Price Setting for Electricity and Heat Generated in Cogeneration," Energies, MDPI, vol. 16(1), pages 1-20, December.
    12. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2018. "Thermoeconomic cost allocation in simple trigeneration systems including thermal energy storage," Energy, Elsevier, vol. 153(C), pages 170-184.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. dos Santos, Rodrigo G. & de Faria, Pedro R. & Santos, José J.C.S. & da Silva, Julio A.M. & Flórez-Orrego, Daniel, 2016. "Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems," Energy, Elsevier, vol. 117(P2), pages 590-603.
    2. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    3. Haydargil, Derya & Abuşoğlu, Ayşegül, 2018. "A comparative thermoeconomic cost accounting analysis and evaluation of biogas engine-powered cogeneration," Energy, Elsevier, vol. 159(C), pages 97-114.
    4. Kim, D.J., 2010. "A new thermoeconomic methodology for energy systems," Energy, Elsevier, vol. 35(1), pages 410-422.
    5. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    6. Silva, J.A.M. & Flórez-Orrego, D. & Oliveira, S., 2014. "An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels," Energy, Elsevier, vol. 67(C), pages 490-495.
    7. César Torres & Antonio Valero, 2021. "The Exergy Cost Theory Revisited," Energies, MDPI, vol. 14(6), pages 1-42, March.
    8. Piacentino, Antonio & Cardona, Fabio, 2010. "Scope-Oriented Thermoeconomic analysis of energy systems. Part I: Looking for a non-postulated cost accounting for the dissipative devices of a vapour compression chiller. Is it feasible?," Applied Energy, Elsevier, vol. 87(3), pages 943-956, March.
    9. Silva, J.A.M. & Oliveira, S., 2014. "An exergy-based approach to determine production cost and CO2 allocation in refineries," Energy, Elsevier, vol. 67(C), pages 607-616.
    10. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2016. "On the efficiency, exergy costs and CO2 emission cost allocation for an integrated syngas and ammonia production plant," Energy, Elsevier, vol. 117(P2), pages 341-360.
    11. Lozano, M.A. & Carvalho, M. & Serra, L.M., 2009. "Operational strategy and marginal costs in simple trigeneration systems," Energy, Elsevier, vol. 34(11), pages 2001-2008.
    12. Bagdanavicius, Audrius & Jenkins, Nick & Hammond, Geoffrey P., 2012. "Assessment of community energy supply systems using energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 247-255.
    13. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    14. Flórez-Orrego, Daniel & da Silva, Julio A.M. & Velásquez, Héctor & de Oliveira, Silvio, 2015. "Renewable and non-renewable exergy costs and CO2 emissions in the production of fuels for Brazilian transportation sector," Energy, Elsevier, vol. 88(C), pages 18-36.
    15. Alkan, Mehmet Ali & Keçebaş, Ali & Yamankaradeniz, Nurettin, 2013. "Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method," Energy, Elsevier, vol. 60(C), pages 426-434.
    16. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
    17. Rosseto de Faria, Pedro & Aiolfi Barone, Marcelo & Guedes dos Santos, Rodrigo & Santos, José Joaquim C.S., 2023. "The environment as a thermoeconomic diagram device for the systematic and automatic waste and environmental cost internalization in thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    18. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
    19. Zare, V. & Mahmoudi, S.M.S. & Yari, M., 2013. "An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia–water power/cooling cycle," Energy, Elsevier, vol. 61(C), pages 397-409.
    20. Ferrara, G. & Lanzini, A. & Leone, P. & Ho, M.T. & Wiley, D.E., 2017. "Exergetic and exergoeconomic analysis of post-combustion CO2 capture using MEA-solvent chemical absorption," Energy, Elsevier, vol. 130(C), pages 113-128.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:127:y:2017:i:c:p:775-785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.