IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v192y2020ics0360544219323692.html
   My bibliography  Save this article

Microbial lipolytic enzymes – promising energy-efficient biocatalysts in bioremediation

Author

Listed:
  • Kumar, Ashok
  • Gudiukaite, Renata
  • Gricajeva, Alisa
  • Sadauskas, Mikas
  • Malunavicius, Vilius
  • Kamyab, Hesam
  • Sharma, Swati
  • Sharma, Tanvi
  • Pant, Deepak

Abstract

Enzymes are biological catalysts that significantly speed up reactions by lowering their activation energy. Compared to chemical catalysts, enzymatic reactions take place in milder temperature conditions. The wide range of advantageous catalytic properties has enabled the use of enzymes in different fields of biotechnology. Microbial lipolytic enzymes have gained attention for the ability to catalyse biotransformation reactions of different esters-bond containing compounds. Conversion of the latter into high-energy products like biofuel and other value-added products (fatty acid esters, mono- and diacylglycerols, etc.) via energy-efficient and ecologically-friendly way makes these biocatalysts an important tool for sustainable biotechnology. However, the role of lipolytic enzymes in the waste management was not being well explored. This review highlighted some important aspects and strategies of lipolytic enzyme-mediated bioremediation to detoxify the lipid, plastic, pesticide and other environmental waste combined with production of important industrial compounds via less energy consuming way. Future perspectives of microbial lipolytic biocatalysts in environmental safety and energy saving are discussed herein as well.

Suggested Citation

  • Kumar, Ashok & Gudiukaite, Renata & Gricajeva, Alisa & Sadauskas, Mikas & Malunavicius, Vilius & Kamyab, Hesam & Sharma, Swati & Sharma, Tanvi & Pant, Deepak, 2020. "Microbial lipolytic enzymes – promising energy-efficient biocatalysts in bioremediation," Energy, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323692
    DOI: 10.1016/j.energy.2019.116674
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219323692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lim, Steven & Lee, Keat Teong, 2014. "Investigation of impurity tolerance and thermal stability for biodiesel production from Jatropha curcas L. seeds using supercritical reactive extraction," Energy, Elsevier, vol. 68(C), pages 71-79.
    2. Ali, Chaudhry Haider & Qureshi, Abdul Sattar & Mbadinga, Serge Maurice & Liu, Jin-Feng & Yang, Shi-Zhong & Mu, Bo-Zhong, 2017. "Biodiesel production from waste cooking oil using onsite produced purified lipase from Pseudomonas aeruginosa FW_SH-1: Central composite design approach," Renewable Energy, Elsevier, vol. 109(C), pages 93-100.
    3. Choong, Wee Pin & Tan, Chung Hong & Show, Pau Loke & Lam, Hon Loong & Mohamad Annuar, Mohamad Suffian Bin & Juan, Joon Ching & Chang, Jo-Shu & Ling, Tau Chuan, 2016. "Efficient enzyme-catalysed transesterification of microalgal biomass from Chlamydomonas sp," Energy, Elsevier, vol. 116(P2), pages 1370-1373.
    4. Román-Figueroa, Celián & Olivares-Carrillo, Pilar & Paneque, Manuel & Palacios-Nereo, Francisco Javier & Quesada-Medina, Joaquín, 2016. "High-yield production of biodiesel by non-catalytic supercritical methanol transesterification of crude castor oil (Ricinus communis)," Energy, Elsevier, vol. 107(C), pages 165-171.
    5. Yun, Huimin & Wang, Meng & Feng, Wei & Tan, Tianwei, 2013. "Process simulation and energy optimization of the enzyme-catalyzed biodiesel production," Energy, Elsevier, vol. 54(C), pages 84-96.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sina Faizollahzadeh Ardabili & Bahman Najafi & Meysam Alizamir & Amir Mosavi & Shahaboddin Shamshirband & Timon Rabczuk, 2018. "Using SVM-RSM and ELM-RSM Approaches for Optimizing the Production Process of Methyl and Ethyl Esters," Energies, MDPI, vol. 11(11), pages 1-19, October.
    2. Zhu, Qing-li & Gu, Heng & Ke, Zengguang, 2018. "Congeneration biodiesel, ricinine and nontoxic meal from castor seed," Renewable Energy, Elsevier, vol. 120(C), pages 51-59.
    3. Kravanja, Gregor & Zajc, Gašper & Knez, Željko & Škerget, Mojca & Marčič, Simon & Knez, Maša H., 2018. "Heat transfer performance of CO2, ethane and their azeotropic mixture under supercritical conditions," Energy, Elsevier, vol. 152(C), pages 190-201.
    4. E, Jiaqiang & Pham, MinhHieu & Deng, Yuanwang & Nguyen, Tuannghia & Duy, VinhNguyen & Le, DucHieu & Zuo, Wei & Peng, Qingguo & Zhang, Zhiqing, 2018. "Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends," Energy, Elsevier, vol. 149(C), pages 979-989.
    5. Yuri A. Shapovalov & Sergei V. Mazanov & Almaz U. Aetov & Dyusek H. Kamysbaev & Rustam R. Tokpayev & Farid M. Gumerov, 2025. "Separation of Rapeseed Oil Transesterification Reaction Product Obtained Under Supercritical Fluid Conditions Using Heterogeneous Catalysts," Energies, MDPI, vol. 18(7), pages 1-18, March.
    6. Muhammad Ikram, 2021. "Models for Predicting Non-Renewable Energy Competing with Renewable Source for Sustainable Energy Development: Case of Asia and Oceania Region," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(2), pages 133-160, December.
    7. Rahmath Abdulla & Eryati Derman & Thivyasri K.Mathialagan & Abu Zahrim Yaser & Mohd Armi Abu Samah & Jualang Azlan Gansau & Syed Umar Faruq Syed Najmuddin, 2022. "Biodiesel Production from Waste Palm Cooking Oil Using Immobilized Candida rugosa Lipase," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    8. Vávra, Aleš & Hájek, Martin & Skopal, Frantisek, 2017. "The removal of free fatty acids from methyl ester," Renewable Energy, Elsevier, vol. 103(C), pages 695-700.
    9. Janbarari, Seyed Reza & Ahmadian Behrooz, Hesam, 2020. "Optimal and robust synthesis of the biodiesel production process using waste cooking oil from different feedstocks," Energy, Elsevier, vol. 198(C).
    10. Liang, Xuezheng, 2013. "Synthesis of biodiesel from waste oil under mild conditions using novel acidic ionic liquid immobilization on poly divinylbenzene," Energy, Elsevier, vol. 63(C), pages 103-108.
    11. Aboelazayem, Omar & Gadalla, Mamdouh & Saha, Basudeb, 2018. "Valorisation of high acid value waste cooking oil into biodiesel using supercritical methanolysis: Experimental assessment and statistical optimisation on typical Egyptian feedstock," Energy, Elsevier, vol. 162(C), pages 408-420.
    12. Zhang-Chun Tang & Yanjun Xia & Qi Xue & Jie Liu, 2018. "A Non-Probabilistic Solution for Uncertainty and Sensitivity Analysis on Techno-Economic Assessments of Biodiesel Production with Interval Uncertainties," Energies, MDPI, vol. 11(3), pages 1-17, March.
    13. Arumugam, A. & Ponnusami, V., 2019. "Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview," Renewable Energy, Elsevier, vol. 131(C), pages 459-471.
    14. Wang, Kai & Da, Yangyang & Bi, Haoran & Liu, Yanhui & Chen, Biqiang & Wang, Meng & Liu, Zihe & Nielsen, Jens & Tan, Tianwei, 2023. "A one-carbon chemicals conversion strategy to produce precursor of biofuels with Saccharomyces cerevisiae," Renewable Energy, Elsevier, vol. 208(C), pages 331-340.
    15. Badoei-dalfard, Arastoo & Malekabadi, Saeid & Karami, Zahra & Sargazi, Ghasem, 2019. "Magnetic cross-linked enzyme aggregates of Km12 lipase: A stable nanobiocatalyst for biodiesel synthesis from waste cooking oil," Renewable Energy, Elsevier, vol. 141(C), pages 874-882.
    16. Ma, Yingqun & Wang, Qunhui & Zheng, Lu & Gao, Zhen & Yang, Yajuan & Wang, Nan & Ma, Hongzhi, 2015. "Biodiesel production using unrefined methanol as transesterification agent and the research of individual effect of impurities," Energy, Elsevier, vol. 82(C), pages 361-369.
    17. Ding, Hui & Ye, Wei & Wang, Yongqiang & Wang, Xianqin & Li, Lujun & Liu, Dan & Gui, Jianzhou & Song, Chunfeng & Ji, Na, 2018. "Process intensification of transesterification for biodiesel production from palm oil: Microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids," Energy, Elsevier, vol. 144(C), pages 957-967.
    18. Matea Bačić & Anabela Ljubić & Martin Gojun & Anita Šalić & Ana Jurinjak Tušek & Bruno Zelić, 2021. "Continuous Integrated Process of Biodiesel Production and Purification—The End of the Conventional Two-Stage Batch Process?," Energies, MDPI, vol. 14(2), pages 1-17, January.
    19. Alvarães, Adan de Oliveira & Prata, Diego Martinez & Santos, Lizandro de Sousa, 2019. "Simulation and optimization of a continuous biodiesel plant using nonlinear programming," Energy, Elsevier, vol. 189(C).
    20. Lam, Su Shiung & Wan Mahari, Wan Adibah & Cheng, Chin Kui & Omar, Rozita & Chong, Cheng Tung & Chase, Howard A., 2016. "Recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon," Energy, Elsevier, vol. 115(P1), pages 791-799.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.