IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v192y2020ics0360544219323618.html
   My bibliography  Save this article

Performance evaluation of μDMFCs based on porous-silicon electrodes and methanol modification

Author

Listed:
  • Yang, Chii-Rong
  • Lu, Chang-Wei
  • Fu, Pin-Chi
  • Cheng, Chia
  • Chiou, Yuang-Cherng
  • Lee, Rong-Tsong
  • Tseng, Shih-Feng

Abstract

This study aims to develop micro direct methanol fuel cells (μDMFCs) incorporating flow-field plates with porous-silicon diffusion layers to form two types of bipolar electrodes, one with a hill-like structure (HLS) and the other with a through-hole silicon (THS) structure. Carbon nanotubes are grown on the surface diffusion layers to serve as catalyst supports. Furthermore, methanol fuel is modified by adding SDSS surfactant with the intent of enhancing its wettability and ability of CO2 removal for preventing CO2 coverage of catalyst layer. The experimental results indicate that the maximum power density of this HLS-THS cell (0.186 mW/cm2) is 4.4 times higher than that of the cell with conventional CP-CP (carbon paper) electrodes. The μDMFCs without SDSS has the highest output voltage at 0.66 V, yet the value linearly decreases to 0 V in only 5.5 h. The μDMFCs with 0.1% SDSS can maintain an average output voltage of 0.45 V for 8 h before the value decreases to approximately 0 V as a result of fuel depletion. Although the output voltage of the μDMFCs with 0.5% SDSS remains steadily at 0.425 V, the voltage decreases to negative values after 7 h because of fuel depletion and crossover.

Suggested Citation

  • Yang, Chii-Rong & Lu, Chang-Wei & Fu, Pin-Chi & Cheng, Chia & Chiou, Yuang-Cherng & Lee, Rong-Tsong & Tseng, Shih-Feng, 2020. "Performance evaluation of μDMFCs based on porous-silicon electrodes and methanol modification," Energy, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323618
    DOI: 10.1016/j.energy.2019.116666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219323618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hosseini, Mir Ghasem & Mahmoodi, Raana & Daneshvari-Esfahlan, Vahid, 2018. "Ni@Pd core-shell nanostructure supported on multi-walled carbon nanotubes as efficient anode nanocatalysts for direct methanol fuel cells with membrane electrode assembly prepared by catalyst coated m," Energy, Elsevier, vol. 161(C), pages 1074-1084.
    2. Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Zou, Yuezhang & Liu, Xiaowei, 2016. "Development of a micro direct methanol fuel cell with heat control," Energy, Elsevier, vol. 116(P1), pages 978-985.
    3. Deng, Huichao & Zhang, Yufeng & Zheng, Xue & Li, Yang & Zhang, Xuelin & Liu, Xiaowei, 2015. "A CNT (carbon nanotube) paper as cathode gas diffusion electrode for water management of passive μ-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol," Energy, Elsevier, vol. 82(C), pages 236-241.
    4. Yuan, Zhenyu & Zhang, Manna & Zuo, Kaiyuan & Ren, Yongqiang, 2018. "The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell," Energy, Elsevier, vol. 150(C), pages 28-37.
    5. Yuan, Zhenyu & Yang, Jie & Li, Xiaoyang & Wang, Shikai, 2016. "The micro-scale analysis of the micro direct methanol fuel cell," Energy, Elsevier, vol. 100(C), pages 10-17.
    6. Hao, Wenbin & Ma, Hongyan & Sun, Guoxing & Li, Zongjin, 2019. "Magnesia phosphate cement composite bipolar plates for passive type direct methanol fuel cells," Energy, Elsevier, vol. 168(C), pages 80-87.
    7. Gao, Y. & Sun, G.Q. & Wang, S.L. & Zhu, S., 2010. "Carbon nanotubes based gas diffusion layers in direct methanol fuel cells," Energy, Elsevier, vol. 35(3), pages 1455-1459.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouyang, Tiancheng & Lu, Jie & Zhao, Zhongkai & Chen, Jingxian & Xu, Peihang, 2021. "New insight on the mechanism of vibration effects in vapor-feed microfluidic fuel cell," Energy, Elsevier, vol. 225(C).
    2. Maria H. de Sá & Alexandra M. F. R. Pinto & Vânia B. Oliveira, 2022. "Passive Small Direct Alcohol Fuel Cells for Low-Power Portable Applications: Assessment Based on Innovative Increments since 2018," Energies, MDPI, vol. 15(10), pages 1-48, May.
    3. Eisa, Tasnim & Park, Sung-Gwan & Mohamed, Hend Omar & Abdelkareem, Mohammad Ali & Lee, Jieun & Yang, Euntae & Castaño, Pedro & Chae, Kyu-Jung, 2021. "Outstanding performance of direct urea/hydrogen peroxide fuel cell based on precious metal-free catalyst electrodes," Energy, Elsevier, vol. 228(C).
    4. Zhang, Rongji & Cao, Jiamu & Wang, Weiqi & Zhou, Jing & Chen, Junyu & Chen, Liang & Chen, Weiping & Zhang, Yufeng, 2023. "An improved strategy of passive micro direct methanol fuel cell: Mass transport mechanism optimization dominated by a single hydrophilic layer," Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Shuo & Liu, Yuntao & Zhao, Chunhui & Huang, Lilian & Zhong, Zhi & Wang, Yun, 2021. "Polarization analysis of a micro direct methanol fuel cell stack based on Debye-Hückel ionic atmosphere theory," Energy, Elsevier, vol. 222(C).
    2. Kim, Jaeyeon & Kim, Hyeok & Song, Hyeonjun & Kim, Dasol & Kim, Geon Hwi & Im, Dasom & Jeong, Youngjin & Park, Taehyun, 2021. "Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 227(C).
    3. Prapainainar, Paweena & Du, Zehui & Theampetch, Apichaya & Prapainainar, Chaiwat & Kongkachuichay, Paisan & Holmes, Stuart M., 2020. "Properties and DMFC performance of nafion/mordenite composite membrane fabricated by solution-casting method with different solvent ratio," Energy, Elsevier, vol. 190(C).
    4. Abdelkareem, Mohammad Ali & Allagui, Anis & Sayed, Enas Taha & El Haj Assad, M. & Said, Zafar & Elsaid, Khaled, 2019. "Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells," Renewable Energy, Elsevier, vol. 131(C), pages 563-584.
    5. Kotowicz, Janusz & Węcel, Daniel & Brzęczek, Mateusz, 2021. "Analysis of the work of a “renewable” methanol production installation based ON H2 from electrolysis and CO2 from power plants," Energy, Elsevier, vol. 221(C).
    6. Xue, Rui & Zhang, Yufeng & Liu, Xiaowei, 2017. "A novel cathode gas diffusion layer for water management of passive μ-DMFC," Energy, Elsevier, vol. 139(C), pages 535-541.
    7. Lee, F.C. & Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L & Lyth, S.M. & Pourkashanian, M., 2022. "Alternative architectures and materials for PEMFC gas diffusion layers: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    8. Chen, Xueye & Li, Tiechuan & Shen, Jienan & Hu, Zengliang, 2017. "From structures, packaging to application: A system-level review for micro direct methanol fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 669-678.
    9. Fang, Shuo & Song, Nan & Liu, Yuntao & Zhou, Chaoyang & Zhao, Chunhui & Wang, Yun, 2023. "Oscillator design for high efficiency DC-DC of micro direct methanol fuel cell," Energy, Elsevier, vol. 284(C).
    10. Maria H. de Sá & Alexandra M. F. R. Pinto & Vânia B. Oliveira, 2022. "Passive Small Direct Alcohol Fuel Cells for Low-Power Portable Applications: Assessment Based on Innovative Increments since 2018," Energies, MDPI, vol. 15(10), pages 1-48, May.
    11. Abdelkareem, Mohammad Ali & Sayed, Enas Taha & Nakagawa, Nobuyoshi, 2020. "Significance of diffusion layers on the performance of liquid and vapor feed passive direct methanol fuel cells," Energy, Elsevier, vol. 209(C).
    12. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    13. Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Sang, Shengtian & Liu, Xiaowei, 2016. "Systemic modeling and analysis of DMFC stack for behavior prediction in system-level application," Energy, Elsevier, vol. 112(C), pages 1015-1023.
    14. Eapen, Deepa Elizabeth & Suresh, Resmi & Patil, Sairaj & Rengaswamy, Raghunathan, 2021. "A systems engineering perspective on electrochemical energy technologies and a framework for application driven choice of technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Investigation of NaOH concentration effect in injected fuel on the performance of passive direct methanol alkaline fuel cell with modified cation exchange membrane," Energy, Elsevier, vol. 94(C), pages 589-599.
    16. A. C. Gómez-Monsiváis & I. Velázquez-Hernández & L. Álvarez-Contreras & M. Guerra-Balcázar & L. G. Arriaga & N. Arjona & J. Ledesma-García, 2017. "In Situ Surface-Enhanced Raman Spectroscopy Study of the Electrocatalytic Effect of PtFe/C Nanocatalyst on Ethanol Electro-Oxidation in Alkaline Medium," Energies, MDPI, vol. 10(3), pages 1-19, March.
    17. Chen, Jingxian & Xu, Peihang & Lu, Jie & Ouyang, Tiancheng & Mo, Chunlan, 2021. "A prospective study of anti-vibration mechanism of microfluidic fuel cell via novel two-phase flow model," Energy, Elsevier, vol. 218(C).
    18. Zhang, Rongji & Cao, Jiamu & Wang, Weiqi & Zhou, Jing & Chen, Junyu & Chen, Liang & Chen, Weiping & Zhang, Yufeng, 2023. "An improved strategy of passive micro direct methanol fuel cell: Mass transport mechanism optimization dominated by a single hydrophilic layer," Energy, Elsevier, vol. 274(C).
    19. Weng, Guo-Ming & Li, Chi-Ying Vanessa & Chan, Kwong-Yu, 2019. "Three-electrolyte electrochemical energy storage systems using both anion- and cation-exchange membranes as separators," Energy, Elsevier, vol. 167(C), pages 1011-1018.
    20. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Study of physicochemical characterization of potassium-doped Nafion117 membrane and performance evaluation of air-breathing fuel cell in different alkali-methanol solutions," Energy, Elsevier, vol. 113(C), pages 1090-1098.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.