IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v190y2020ics036054421932095x.html
   My bibliography  Save this article

Positive displacement turbine - A novel solution to the pressure differential control valve failure problem and energy utilization

Author

Listed:
  • Sonawat, Arihant
  • Kim, Seung-Jun
  • Yang, Hyeon-Mo
  • Choi, Young-Seok
  • Kim, Kyung-Min
  • Lee, Yong-Kab
  • Kim, Jin-Hyuk

Abstract

Micro hydro turbines are getting renewed research interest in recovering unused energy from systems like water supply pipelines, sewage treatment and transportation plants, chemical and oil refineries, etc. and making them energy efficient for sustainable development. The present work dealt with this aspect wherein the unused energy of the hot water transportation pipelines, which was earlier throttled by pressure differential control valve (PDCV), was harvested and used elsewhere. A special class of multi-purpose micro hydro turbine known as the positive displacement turbine was developed for the present application which involved very low flow rates with high heads and very low specific speeds and to replace the PDCV which was frequently failing due to cavitation causing loss of energy. A framework was developed for designing such turbines and predicting their performance using CFD. The reasons for the occurrence of cavitation and flow pulsations were also examined and remedial measures were incorporated for their elimination. At the rated condition during experimental study, the base design generated 7.31 kW power with an overall efficiency of 67.7%. The socio-economic analysis was also carried out which concluded that the PDT will aid in energy conservation and reduction in CO2 emissions.

Suggested Citation

  • Sonawat, Arihant & Kim, Seung-Jun & Yang, Hyeon-Mo & Choi, Young-Seok & Kim, Kyung-Min & Lee, Yong-Kab & Kim, Jin-Hyuk, 2020. "Positive displacement turbine - A novel solution to the pressure differential control valve failure problem and energy utilization," Energy, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:energy:v:190:y:2020:i:c:s036054421932095x
    DOI: 10.1016/j.energy.2019.116400
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421932095X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoffstaedt, J.P. & Truijen, D.P.K. & Fahlbeck, J. & Gans, L.H.A. & Qudaih, M. & Laguna, A.J. & De Kooning, J.D.M. & Stockman, K. & Nilsson, H. & Storli, P.-T. & Engel, B. & Marence, M. & Bricker, J.D., 2022. "Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Bao, Mupeng & Xie, Yudong & Zhang, Xinbiao & Ju, Jinyong & Wang, Yong, 2023. "Performance improvement of a control valve with energy harvesting," Energy, Elsevier, vol. 263(PC).
    3. Zhu, Qianming & Qi, Yinke & Huang, Diangui, 2023. "Numerical simulation of performance of traveling wave pump-turbine at different wave speeds in pumping mode," Renewable Energy, Elsevier, vol. 203(C), pages 485-494.
    4. Han, Zhiyue & Wang, Wenjie & Du, Zhiming & Zhang, Yupeng & Yu, Yue, 2021. "Self-heating inflatable lifejacket using gas generating agent as energy source," Energy, Elsevier, vol. 224(C).
    5. Hamlehdar, Maryam & Yousefi, Hossein & Noorollahi, Younes & Mohammadi, Mohammad, 2022. "Energy recovery from water distribution networks using micro hydropower: A case study in Iran," Energy, Elsevier, vol. 252(C).
    6. Chen, Fu-qiang & Jin, Zhi-jiang, 2021. "Throttling components effect on aerodynamic performance of superheated steam flow in multi-stage high pressure reducing valve," Energy, Elsevier, vol. 230(C).
    7. Sonawat, Arihant & Choi, Young-Seok & Kim, Kyung Min & Kim, Jin-Hyuk, 2020. "Parametric study on the sensitivity and influence of axial and radial clearance on the performance of a positive displacement hydraulic turbine," Energy, Elsevier, vol. 201(C).
    8. Sonawat, Arihant & Yang, Hyeon-Mo & Kim, Jin-Hyuk, 2021. "Experimental study of positive displacement hydraulic turbine at various temperatures and development of empirical co-relation for flowrate prediction," Renewable Energy, Elsevier, vol. 172(C), pages 1293-1300.
    9. Sonawat, Arihant & Kim, Sung & Ma, Sang-Bum & Kim, Seung-Jun & Lee, Ju Beak & Yu, Myo Suk & Kim, Jin-Hyuk, 2022. "Investigation of unsteady pressure fluctuations and methods for its suppression for a double suction centrifugal pump," Energy, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    2. Huixiang Chen & Daqing Zhou & Yuan Zheng & Shengwen Jiang & An Yu & You Guo, 2018. "Load Rejection Transient Process Simulation of a Kaplan Turbine Model by Co-Adjusting Guide Vanes and Runner Blades," Energies, MDPI, vol. 11(12), pages 1-18, November.
    3. Soha, Tamás & Munkácsy, Béla & Harmat, Ádám & Csontos, Csaba & Horváth, Gergely & Tamás, László & Csüllög, Gábor & Daróczi, Henriett & Sáfián, Fanni & Szabó, Mária, 2017. "GIS-based assessment of the opportunities for small-scale pumped hydro energy storage in middle-mountain areas focusing on artificial landscape features," Energy, Elsevier, vol. 141(C), pages 1363-1373.
    4. Rossi, Mosè & Nigro, Alessandra & Renzi, Massimiliano, 2019. "Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions," Applied Energy, Elsevier, vol. 248(C), pages 555-566.
    5. Sonawat, Arihant & Choi, Young-Seok & Kim, Kyung Min & Kim, Jin-Hyuk, 2020. "Parametric study on the sensitivity and influence of axial and radial clearance on the performance of a positive displacement hydraulic turbine," Energy, Elsevier, vol. 201(C).
    6. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    7. Jiang, Dongyue & Xu, Minyi & Dong, Ming & Guo, Fei & Liu, Xiaohua & Chen, Guijun & Wang, Zhong Lin, 2019. "Water-solid triboelectric nanogenerators: An alternative means for harvesting hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Alejandro Tapia Córdoba & Daniel Gutiérrez Reina & Pablo Millán Gata, 2019. "An Evolutionary Computational Approach for Designing Micro Hydro Power Plants," Energies, MDPI, vol. 12(5), pages 1-25, March.
    9. Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Li, Xiao-Bin & Muhirwa, Alexis & Li, Biao & Bisengimana, Emmanuel, 2019. "Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions," Renewable Energy, Elsevier, vol. 136(C), pages 33-47.
    10. Tran, Thomas T.D. & Smith, Amanda D., 2017. "fEvaluation of renewable energy technologies and their potential for technical integration and cost-effective use within the U.S. energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1372-1388.
    11. Tapia, A. & Millán, P. & Gómez-Estern, F., 2018. "Integer programming to optimize Micro-Hydro Power Plants for generic river profiles," Renewable Energy, Elsevier, vol. 126(C), pages 905-914.
    12. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    13. Ifaei, Pouya & Farid, Alireza & Yoo, ChangKyoo, 2018. "An optimal renewable energy management strategy with and without hydropower using a factor weighted multi-criteria decision making analysis and nation-wide big data - Case study in Iran," Energy, Elsevier, vol. 158(C), pages 357-372.
    14. Suyesh, Bhattarai & Parag, Vichare & Keshav, Dahal & Ahmed, Al Makky & Abdul-Ghani, Olabi, 2019. "Novel trends in modelling techniques of Pelton Turbine bucket for increased renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 87-101.
    15. Sonawat, Arihant & Choi, Young-Seok & Kim, Kyung Min & Kim, Jin-Hyuk, 2020. "Leakage loss estimation and parametric study on the effect of twist in rotor shape for harnessing Pico hydropower," Renewable Energy, Elsevier, vol. 151(C), pages 1240-1249.
    16. Tapia, A. & R. del Nozal, A. & Reina, D.G. & Millán, P., 2021. "Three-dimensional optimization of penstock layouts for micro-hydropower plants using genetic algorithms," Applied Energy, Elsevier, vol. 301(C).
    17. Kamran, Muhammad & Asghar, Rohail & Mudassar, Muhammad & Abid, Muhammad Irfan, 2019. "Designing and economic aspects of run-of-canal based micro-hydro system on Balloki-Sulaimanki Link Canal-I for remote villages in Punjab, Pakistan," Renewable Energy, Elsevier, vol. 141(C), pages 76-87.
    18. López-González, A. & Ferrer-Martí, L. & Domenech, B., 2019. "Long-term sustainability assessment of micro-hydro projects: Case studies from Venezuela," Energy Policy, Elsevier, vol. 131(C), pages 120-130.
    19. Mar Alonso-Martinez & José Luis Suárez Sierra & Juan José del Coz Díaz & Juan Enrique Martinez-Martinez, 2020. "A New Methodology to Design Sustainable Archimedean Screw Turbines as Green Energy Generators," IJERPH, MDPI, vol. 17(24), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:190:y:2020:i:c:s036054421932095x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.