IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v169y2019icp819-832.html
   My bibliography  Save this article

Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning

Author

Listed:
  • Jin, Siya
  • Patton, Ron J.
  • Guo, Bingyong

Abstract

In this work a three dimensional computational fluid dynamic (CFD) model has been constructed based on a 1/50 scale heaving point absorber wave energy converter (PAWEC). The CFD model is validated first via wave tank tests and then is applied in this study to investigate the joint effects of device geometry and power take-off (PTO) damping on wave energy absorption. Three PAWEC devices are studied with the following geometrical designs: a cylindrical flat-bottom device (CL); a hemispherical streamlined bottom design (CH) and a 90°-conical streamlined bottom structure (CC). A PTO force via varying damping coefficient is applied to compare the power conversion performances of the aforementioned devices. Free decay, wave-PAWEC interaction and power absorption tests are conducted via the CFD model. The results show that for CH and CC designs the added mass and hydrodynamic damping decrease by up to 60% compared with the CL device. Moreover, the CC design is the best of the three structures since its amplitude response increases by up to 100% compared with the CL. Applying an appropriate PTO damping to the CC device prominently increases the achievable optimal power by up to 70% under both regular and irregular waves (compared with the CL device).

Suggested Citation

  • Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2019. "Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning," Energy, Elsevier, vol. 169(C), pages 819-832.
  • Handle: RePEc:eee:energy:v:169:y:2019:i:c:p:819-832
    DOI: 10.1016/j.energy.2018.12.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421832440X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Babarit, A., 2015. "A database of capture width ratio of wave energy converters," Renewable Energy, Elsevier, vol. 80(C), pages 610-628.
    2. Son, Daewoong & Belissen, Valentin & Yeung, Ronald W., 2016. "Performance validation and optimization of a dual coaxial-cylinder ocean-wave energy extractor," Renewable Energy, Elsevier, vol. 92(C), pages 192-201.
    3. McCabe, A.P., 2013. "Constrained optimization of the shape of a wave energy collector by genetic algorithm," Renewable Energy, Elsevier, vol. 51(C), pages 274-284.
    4. Penalba, Markel & Giorgi, Giussepe & Ringwood, John V., 2017. "Mathematical modelling of wave energy converters: A review of nonlinear approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1188-1207.
    5. Henriques, J.C.C. & Gato, L.M.C. & Lemos, J.M. & Gomes, R.P.F. & Falcão, A.F.O., 2016. "Peak-power control of a grid-integrated oscillating water column wave energy converter," Energy, Elsevier, vol. 109(C), pages 378-390.
    6. Zang, Zhipeng & Zhang, Qinghe & Qi, Yue & Fu, Xiaoying, 2018. "Hydrodynamic responses and efficiency analyses of a heaving-buoy wave energy converter with PTO damping in regular and irregular waves," Renewable Energy, Elsevier, vol. 116(PA), pages 527-542.
    7. Anbarsooz, M. & Passandideh-Fard, M. & Moghiman, M., 2014. "Numerical simulation of a submerged cylindrical wave energy converter," Renewable Energy, Elsevier, vol. 64(C), pages 132-143.
    8. Ransley, E.J. & Greaves, D. & Raby, A. & Simmonds, D. & Hann, M., 2017. "Survivability of wave energy converters using CFD," Renewable Energy, Elsevier, vol. 109(C), pages 235-247.
    9. López, M. & Taveira-Pinto, F. & Rosa-Santos, P., 2017. "Influence of the power take-off characteristics on the performance of CECO wave energy converter," Energy, Elsevier, vol. 120(C), pages 686-697.
    10. Chiba, S. & Waki, M. & Wada, T. & Hirakawa, Y. & Masuda, K. & Ikoma, T., 2013. "Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators," Applied Energy, Elsevier, vol. 104(C), pages 497-502.
    11. Goggins, Jamie & Finnegan, William, 2014. "Shape optimisation of floating wave energy converters for a specified wave energy spectrum," Renewable Energy, Elsevier, vol. 71(C), pages 208-220.
    12. Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2017. "Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study," Energy, Elsevier, vol. 139(C), pages 1197-1209.
    13. Guo, Bingyong & Patton, Ron J. & Jin, Siya & Lan, Jianglin, 2018. "Numerical and experimental studies of excitation force approximation for wave energy conversion," Renewable Energy, Elsevier, vol. 125(C), pages 877-889.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neshat, Mehdi & Nezhad, Meysam Majidi & Sergiienko, Nataliia Y. & Mirjalili, Seyedali & Piras, Giuseppe & Garcia, Davide Astiaso, 2022. "Wave power forecasting using an effective decomposition-based convolutional Bi-directional model with equilibrium Nelder-Mead optimiser," Energy, Elsevier, vol. 256(C).
    2. Garcia-Teruel, A. & Forehand, D.I.M., 2021. "A review of geometry optimisation of wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Li, Qiaofeng & Mi, Jia & Li, Xiaofan & Chen, Shuo & Jiang, Boxi & Zuo, Lei, 2021. "A self-floating oscillating surge wave energy converter," Energy, Elsevier, vol. 230(C).
    4. In-Ho Kim & Byeong-Ryong Kim & Seon-Jun Jang, 2023. "Performance Validation of Resonant Wave Power Converter with Variable Moment of Inertia," Energies, MDPI, vol. 16(18), pages 1-13, September.
    5. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    6. Sricharan, V.V.S. & Chandrasekaran, Srinivasan, 2021. "Time-domain analysis of a bean-shaped multi-body floating wave energy converter with a hydraulic power take-off using WEC-Sim," Energy, Elsevier, vol. 223(C).
    7. Xuhui, Yue & Qijuan, Chen & Zenghui, Wang & Dazhou, Geng & Donglin, Yan & Wen, Jiang & Weiyu, Wang, 2019. "A novel nonlinear state space model for the hydraulic power take-off of a wave energy converter," Energy, Elsevier, vol. 180(C), pages 465-479.
    8. Zhang, Yongxing & Huang, Zhicong & Zou, Bowei & Bian, Jing, 2023. "Conceptual design and analysis for a novel parallel configuration-type wave energy converter," Renewable Energy, Elsevier, vol. 208(C), pages 627-644.
    9. Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
    10. Aleix Maria-Arenas & Aitor J. Garrido & Eugen Rusu & Izaskun Garrido, 2019. "Control Strategies Applied to Wave Energy Converters: State of the Art," Energies, MDPI, vol. 12(16), pages 1-19, August.
    11. Garcia-Teruel, Anna & DuPont, Bryony & Forehand, David I.M., 2021. "Hull geometry optimisation of wave energy converters: On the choice of the objective functions and the optimisation formulation," Applied Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    2. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2018. "Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment," Renewable Energy, Elsevier, vol. 129(PA), pages 500-512.
    3. Garcia-Teruel, A. & Forehand, D.I.M., 2021. "A review of geometry optimisation of wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Yadong Wen & Weijun Wang & Hua Liu & Longbo Mao & Hongju Mi & Wenqiang Wang & Guoping Zhang, 2018. "A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea," Energies, MDPI, vol. 11(10), pages 1-22, October.
    5. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.
    6. Mehdi Neshat & Nataliia Y. Sergiienko & Erfan Amini & Meysam Majidi Nezhad & Davide Astiaso Garcia & Bradley Alexander & Markus Wagner, 2020. "A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea," Energies, MDPI, vol. 13(20), pages 1-23, October.
    7. Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
    8. Wang, LiGuo & Ringwood, John V., 2021. "Control-informed ballast and geometric optimisation of a three-body hinge-barge wave energy converter using two-layer optimisation," Renewable Energy, Elsevier, vol. 171(C), pages 1159-1170.
    9. Gianmaria Giannini & Paulo Rosa-Santos & Victor Ramos & Francisco Taveira-Pinto, 2020. "On the Development of an Offshore Version of the CECO Wave Energy Converter," Energies, MDPI, vol. 13(5), pages 1-24, February.
    10. Ulazia, Alain & Esnaola, Ganix & Serras, Paula & Penalba, Markel, 2020. "On the impact of long-term wave trends on the geometry optimisation of oscillating water column wave energy converters," Energy, Elsevier, vol. 206(C).
    11. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    12. A. H. Samitha Weerakoon & Young-Ho Lee & Mohsen Assadi, 2023. "Wave Energy Convertor for Bilateral Offshore Wave Flows: A Computational Fluid Dynamics (CFD) Study," Sustainability, MDPI, vol. 15(9), pages 1-40, April.
    13. Chandrasekaran, Srinivasan & Sricharan, V.V.S., 2020. "Numerical analysis of a new multi-body floating wave energy converter with a linear power take-off system," Renewable Energy, Elsevier, vol. 159(C), pages 250-271.
    14. Shadman, Milad & Estefen, Segen F. & Rodriguez, Claudio A. & Nogueira, Izabel C.M., 2018. "A geometrical optimization method applied to a heaving point absorber wave energy converter," Renewable Energy, Elsevier, vol. 115(C), pages 533-546.
    15. Rodríguez, Claudio A. & Rosa-Santos, Paulo & Taveira-Pinto, Francisco, 2019. "Assessment of damping coefficients of power take-off systems of wave energy converters: A hybrid approach," Energy, Elsevier, vol. 169(C), pages 1022-1038.
    16. Elie Al Shami & Ran Zhang & Xu Wang, 2018. "Point Absorber Wave Energy Harvesters: A Review of Recent Developments," Energies, MDPI, vol. 12(1), pages 1-36, December.
    17. Faÿ, François-Xavier & Robles, Eider & Marcos, Marga & Aldaiturriaga, Endika & Camacho, Eduardo F., 2020. "Sea trial results of a predictive algorithm at the Mutriku Wave power plant and controllers assessment based on a detailed plant model," Renewable Energy, Elsevier, vol. 146(C), pages 1725-1745.
    18. Sricharan, V.V.S. & Chandrasekaran, Srinivasan, 2021. "Time-domain analysis of a bean-shaped multi-body floating wave energy converter with a hydraulic power take-off using WEC-Sim," Energy, Elsevier, vol. 223(C).
    19. Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Rodríguez, Claudio A. & Ramos, Victor & López, Mario, 2019. "The CECO wave energy converter: Recent developments," Renewable Energy, Elsevier, vol. 139(C), pages 368-384.
    20. Ropero-Giralda, Pablo & Crespo, Alejandro J.C. & Tagliafierro, Bonaventura & Altomare, Corrado & Domínguez, José M. & Gómez-Gesteira, Moncho & Viccione, Giacomo, 2020. "Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics," Renewable Energy, Elsevier, vol. 162(C), pages 1763-1776.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:169:y:2019:i:c:p:819-832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.