IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v164y2018icp1114-1134.html
   My bibliography  Save this article

Comparison between differential evolution algorithms and response surface methodology in ethylene plant optimization based on an extended combined energy - exergy analysis

Author

Listed:
  • Jahromi, Farid Sadeghian
  • Beheshti, Masoud
  • Rajabi, Razieh Fereydon

Abstract

This paper applies an extend energy - exergy analysis as a strategy for evaluating the performance of different types of distillation columns in ethylene production process by using industrial data. Regarding to the limitation and deficiency of energy – exergy combination, a new method named exergy destruction level (EDL) and conceptual diagram based on equipment target value is proposed for process equipment with pressure and chemical composition changes. The effects of different operational parameters on the component separation are evaluated by sensitivity analysis. Eventually response surface methodology (RSM) and artificial intelligence (DE) method are developed for optimization of the chemical plant. Comparing obtained results from ethylene plant optimization by using RSM and DE, it was found that annual profit percentage with DE method is 61.6% more than RSM method. Also, results of optimization showed that the most effective operating parameters consist of feed stream temperature, boil-up ratio, reflux ratio, column pressure and feed stage. It was observed that utilities and refrigeration cycle consumption work have been declined significantly by using DE optimizer and EDL analysis (12.6% and 11.6%) compared to RSM optimizer and exergy analysis (11.9% and 4.8%). It is obvious that, EDL analysis and DE method expedite process optimization and provide more precise analysis than conventional energy-exergy analysis.

Suggested Citation

  • Jahromi, Farid Sadeghian & Beheshti, Masoud & Rajabi, Razieh Fereydon, 2018. "Comparison between differential evolution algorithms and response surface methodology in ethylene plant optimization based on an extended combined energy - exergy analysis," Energy, Elsevier, vol. 164(C), pages 1114-1134.
  • Handle: RePEc:eee:energy:v:164:y:2018:i:c:p:1114-1134
    DOI: 10.1016/j.energy.2018.09.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218318231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fábrega, F.M. & Rossi, J.S. & d'Angelo, J.V.H., 2010. "Exergetic analysis of the refrigeration system in ethylene and propylene production process," Energy, Elsevier, vol. 35(3), pages 1224-1231.
    2. Banerjee, Avik & Guria, Chandan & Maiti, Subodh K., 2016. "Fertilizer assisted optimal cultivation of microalgae using response surface method and genetic algorithm for biofuel feedstock," Energy, Elsevier, vol. 115(P1), pages 1272-1290.
    3. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    4. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
    5. Sun, Jinsheng & Wang, Fan & Ma, Tingting & Gao, Hong & Wu, Peng & Liu, Lili, 2012. "Energy and exergy analysis of a five-column methanol distillation scheme," Energy, Elsevier, vol. 45(1), pages 696-703.
    6. Shahandeh, H. & Ivakpour, J. & Kasiri, N., 2014. "Internal and external HIDiCs (heat-integrated distillation columns) optimization by genetic algorithm," Energy, Elsevier, vol. 64(C), pages 875-886.
    7. Mortazavi, A. & Somers, C. & Hwang, Y. & Radermacher, R. & Rodgers, P. & Al-Hashimi, S., 2012. "Performance enhancement of propane pre-cooled mixed refrigerant LNG plant," Applied Energy, Elsevier, vol. 93(C), pages 125-131.
    8. Pires, Thiago S. & Cruz, Manuel E. & Colaço, Marcelo J., 2013. "Response surface method applied to the thermoeconomic optimization of a complex cogeneration system modeled in a process simulator," Energy, Elsevier, vol. 52(C), pages 44-54.
    9. Vidal, A. & Best, R. & Rivero, R. & Cervantes, J., 2006. "Analysis of a combined power and refrigeration cycle by the exergy method," Energy, Elsevier, vol. 31(15), pages 3401-3414.
    10. BoroumandJazi, G. & Rismanchi, B. & Saidur, R., 2013. "A review on exergy analysis of industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 198-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, J. & Goel, A. & Kua, H.W. & Wang, C.H. & Peng, Y.H., 2021. "Evaluating the urban metabolism sustainability of municipal solid waste management system: An extended exergy accounting and indexing perspective," Applied Energy, Elsevier, vol. 300(C).
    2. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
    3. Francisco Amaral & Alex Santos & Ewerton Calixto & Fernando Pessoa & Delano Santana, 2020. "Exergetic Evaluation of an Ethylene Refrigeration Cycle," Energies, MDPI, vol. 13(14), pages 1-21, July.
    4. Xiang, Dong & Huang, Weiqing & Huang, Peng, 2018. "A novel coke-oven gas-to-natural gas and hydrogen process by integrating chemical looping hydrogen with methanation," Energy, Elsevier, vol. 165(PB), pages 1024-1033.
    5. Mochen Liao & Kai Lan & Yuan Yao, 2022. "Sustainability implications of artificial intelligence in the chemical industry: A conceptual framework," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 164-182, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim, Thamir K. & Mohammed, Mohammed Kamil & Awad, Omar I. & Abdalla, Ahmed N. & Basrawi, Firdaus & Mohammed, Marwah N. & Najafi, G. & Mamat, Rizalman, 2018. "A comprehensive review on the exergy analysis of combined cycle power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 835-850.
    2. Santhanam, S. & Heddrich, M.P. & Riedel, M. & Friedrich, K.A., 2017. "Theoretical and experimental study of Reversible Solid Oxide Cell (r-SOC) systems for energy storage," Energy, Elsevier, vol. 141(C), pages 202-214.
    3. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    4. Arriola-Medellín, Alejandro & Manzanares-Papayanopoulos, Emilio & Romo-Millares, César, 2014. "Diagnosis and redesign of power plants using combined Pinch and Exergy Analysis," Energy, Elsevier, vol. 72(C), pages 643-651.
    5. Sahraei, Mohammad Hossein & Farhadi, Fatola & Boozarjomehry, Ramin Bozorgmehry, 2013. "Analysis and interaction of exergy, environmental and economic in multi-objective optimization of BTX process based on evolutionary algorithm," Energy, Elsevier, vol. 59(C), pages 147-156.
    6. Chen, Ting & Zhang, Bingjian & Chen, Qinglin, 2014. "Heat integration of fractionating systems in para-xylene plants based on column optimization," Energy, Elsevier, vol. 72(C), pages 311-321.
    7. Azarpour, Abbas & Mohamadi-Baghmolaei, Mohamad & Hajizadeh, Abdollah & Zendehboudi, Sohrab, 2022. "Systematic energy and exergy assessment of a hydropurification process: Theoretical and practical insights," Energy, Elsevier, vol. 239(PC).
    8. Areej Javed & Afaq Hassan & Muhammad Babar & Umair Azhar & Asim Riaz & Rana Mujahid & Tausif Ahmad & Muhammad Mubashir & Hooi Ren Lim & Pau Loke Show & Kuan Shiong Khoo, 2022. "A Comparison of the Exergy Efficiencies of Various Heat-Integrated Distillation Columns," Energies, MDPI, vol. 15(18), pages 1-15, September.
    9. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.
    10. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    11. Schlomann, Barbara & Schleich, Joachim, 2015. "Adoption of low-cost energy efficiency measures in the tertiary sector—An empirical analysis based on energy survey data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1127-1133.
    12. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
    13. Kong, Lingbo & Price, Lynn & Hasanbeigi, Ali & Liu, Huanbin & Li, Jigeng, 2013. "Potential for reducing paper mill energy use and carbon dioxide emissions through plant-wide energy audits: A case study in China," Applied Energy, Elsevier, vol. 102(C), pages 1334-1342.
    14. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    15. Fernando, Yudi & Hor, Wei Lin, 2017. "Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of malaysian manufacturing firms," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 62-73.
    16. Yoon, Hae-Sung & Kim, Eun-Seob & Kim, Min-Soo & Lee, Jang-Yeob & Lee, Gyu-Bong & Ahn, Sung-Hoon, 2015. "Towards greener machine tools – A review on energy saving strategies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 870-891.
    17. Iftikhar Ahmad & Muhammad Salman Arif & Izzat Iqbal Cheema & Patrik Thollander & Masroor Ahmed Khan, 2020. "Drivers and Barriers for Efficient Energy Management Practices in Energy-Intensive Industries: A Case-Study of Iron and Steel Sector," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    18. Utlu, Zafer, 2015. "Investigation of the potential for heat recovery at low, medium, and high stages in the Turkish industrial sector (TIS): An application," Energy, Elsevier, vol. 81(C), pages 394-405.
    19. Francisco Amaral & Alex Santos & Ewerton Calixto & Fernando Pessoa & Delano Santana, 2020. "Exergetic Evaluation of an Ethylene Refrigeration Cycle," Energies, MDPI, vol. 13(14), pages 1-21, July.
    20. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:164:y:2018:i:c:p:1114-1134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.