IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v161y2018icp143-155.html
   My bibliography  Save this article

Optimization of electromagnetic energy in cold crucible used for directional solidification of TiAl alloy

Author

Listed:
  • Yang, Jieren
  • Chen, Ruirun
  • Su, Yanqing
  • Ding, Hongsheng
  • Guo, Jingjie
  • Fu, Hengzhi

Abstract

Directionally solidified TiAl alloys are one of the most potential candidate for turbine blade in advanced aircraft engines. Electromagnetic (EM) cold crucible directional solidification (CCDS) is a novel technique for preparing large-size TiAl ingot without chemical contamination. In order to improve EM utilization, first the utilization of EM energy in CCDS was evaluated. Then based on the numerical calculation, the absorption power in TiAl alloy that induced by EM energy and the uniformity of EM field were studied, which contributes to the configuration design. Results indicated that the energy utilization in CCDS is improved by optimizing crucible configuration, the start-up power per square mm significantly decreases from 1250 to 500 W/mm2. Finally, a square cold crucible with the section 36 mm × 36 mm was fabricated via a configuration optimization and employed to directionally solidifying TiAl alloy. Both the surface quality and the microstructure were controlled in the processing window, suggesting that the optimization utilization of EM energy in CCDS has been achieved. The results can provide semiquantitative and experimental guidelines on the crucible design and the microstructure control of TiAl alloys from the perspective of EM energy.

Suggested Citation

  • Yang, Jieren & Chen, Ruirun & Su, Yanqing & Ding, Hongsheng & Guo, Jingjie & Fu, Hengzhi, 2018. "Optimization of electromagnetic energy in cold crucible used for directional solidification of TiAl alloy," Energy, Elsevier, vol. 161(C), pages 143-155.
  • Handle: RePEc:eee:energy:v:161:y:2018:i:c:p:143-155
    DOI: 10.1016/j.energy.2018.07.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218313732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Popa, Cezar & Pentiuc, Radu, 2012. "Analysis of a new induction thermal converter for heating," Energy, Elsevier, vol. 42(1), pages 81-93.
    2. Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2016. "Magnetic microencapsulated phase change materials with an organo-silica shell: Design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films," Energy, Elsevier, vol. 98(C), pages 225-239.
    3. Lamberg, Piia, 2004. "Approximate analytical model for two-phase solidification problem in a finned phase-change material storage," Applied Energy, Elsevier, vol. 77(2), pages 131-152, February.
    4. Sayyaadi, Hoseyn & Mehrabipour, Reza, 2012. "Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger," Energy, Elsevier, vol. 38(1), pages 362-375.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Henghua & Kang, Lixia & Wang, Kai & Liu, Yongzhong, 2022. "Parametric optimization of removing iron from solid waste melts based on analysis of real-time coupled two-phase interface in an induction heating furnace," Energy, Elsevier, vol. 261(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dutil, Yvan & Rousse, Daniel R. & Salah, Nizar Ben & Lassue, Stéphane & Zalewski, Laurent, 2011. "A review on phase-change materials: Mathematical modeling and simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 112-130, January.
    2. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    3. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    4. Li, Yuqiang & Liu, Gang & Liu, Xianping & Liao, Shengming, 2016. "Thermodynamic multi-objective optimization of a solar-dish Brayton system based on maximum power output, thermal efficiency and ecological performance," Renewable Energy, Elsevier, vol. 95(C), pages 465-473.
    5. Yang, Fubin & Zhang, Hongguang & Bei, Chen & Song, Songsong & Wang, Enhua, 2015. "Parametric optimization and performance analysis of ORC (organic Rankine cycle) for diesel engine waste heat recovery with a fin-and-tube evaporator," Energy, Elsevier, vol. 91(C), pages 128-141.
    6. Teymouri, Matin & Sadeghi, Shayan & Moghimi, Mahdi & Ghandehariun, Samane, 2021. "3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant," Energy, Elsevier, vol. 230(C).
    7. Naserabad, S. Nikbakht & Mehrpanahi, A. & Ahmadi, G., 2018. "Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications," Energy, Elsevier, vol. 159(C), pages 277-293.
    8. Pitié, F. & Zhao, C.Y. & Baeyens, J. & Degrève, J. & Zhang, H.L., 2013. "Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles," Applied Energy, Elsevier, vol. 109(C), pages 505-513.
    9. El-Kharashi, Eyhab & El-Dessouki, Maher, 2014. "Coupling induction motors to improve the energy conversion process during balanced and unbalanced operation," Energy, Elsevier, vol. 65(C), pages 511-516.
    10. Ganjehkaviri, A. & Mohd Jaafar, M.N. & Hosseini, S.E. & Barzegaravval, H., 2017. "Genetic algorithm for optimization of energy systems: Solution uniqueness, accuracy, Pareto convergence and dimension reduction," Energy, Elsevier, vol. 119(C), pages 167-177.
    11. Reyhani, Hamed Akbarpour & Meratizaman, Mousa & Ebrahimi, Armin & Pourali, Omid & Amidpour, Majid, 2016. "Thermodynamic and economic optimization of SOFC-GT and its cogeneration opportunities using generated syngas from heavy fuel oil gasification," Energy, Elsevier, vol. 107(C), pages 141-164.
    12. Darhovsky, Yegal & Mellincovsky, Martin & Baimel, Dmitry & Kuperman, Alon, 2021. "A novel contactless, feedbackless and sensorless power delivery link to electromagnetic levitation melting system residing in sealed compartment," Energy, Elsevier, vol. 231(C).
    13. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    14. Borreguero, Ana M. & Luz Sánchez, M. & Valverde, José Luis & Carmona, Manuel & Rodríguez, Juan F., 2011. "Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content," Applied Energy, Elsevier, vol. 88(3), pages 930-937, March.
    15. Habibi Khalaj, Ali & Scherer, Thomas & Siriwardana, Jayantha & Halgamuge, Saman K., 2015. "Multi-objective efficiency enhancement using workload spreading in an operational data center," Applied Energy, Elsevier, vol. 138(C), pages 432-444.
    16. Wickramaratne, Chatura & Dhau, Jaspreet S. & Kamal, Rajeev & Myers, Philip & Goswami, D.Y. & Stefanakos, E., 2018. "Macro-encapsulation and characterization of chloride based inorganic Phase change materials for high temperature thermal energy storage systems," Applied Energy, Elsevier, vol. 221(C), pages 587-596.
    17. Bazri, Shahab & Badruddin, Irfan Anjum & Naghavi, Mohammad Sajad & Bahiraei, Mehdi, 2018. "A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles," Renewable Energy, Elsevier, vol. 118(C), pages 761-778.
    18. Shirazi, Ali & Najafi, Behzad & Aminyavari, Mehdi & Rinaldi, Fabio & Taylor, Robert A., 2014. "Thermal–economic–environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling," Energy, Elsevier, vol. 69(C), pages 212-226.
    19. Sayyaadi, Hoseyn & Baghsheikhi, Mostafa, 2019. "Retrofit of a steam power plant using the adaptive neuro-fuzzy inference system in response to the load variation," Energy, Elsevier, vol. 175(C), pages 1164-1173.
    20. Saulius Pakalka & Kęstutis Valančius & Giedrė Streckienė, 2021. "Experimental and Theoretical Investigation of the Natural Convection Heat Transfer Coefficient in Phase Change Material (PCM) Based Fin-and-Tube Heat Exchanger," Energies, MDPI, vol. 14(3), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:161:y:2018:i:c:p:143-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.