IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v153y2018icp90-99.html
   My bibliography  Save this article

Analysis of increasing efficiency of modern combined cycle power plant: A case study

Author

Listed:
  • Kotowicz, Janusz
  • Brzęczek, Mateusz

Abstract

The paper presents a comprehensive thermodynamic analysis of various gas turbine improvements in a modern combined cycle power plant designed to increase its electrical efficiency. The power plant was analyzed for use in: open air (convection, film and transpiration) cooling without and with cooling air cooler, closed air cooling, closed steam cooling and sequential combustion. The combined cycle power plant is equipped with a 200 MW gas turbine and a subcritical heat recovery steam generator with steam reheating. This article presents the effect of coolant cooling (air) and its use in the steam cycle of the combined cycle power plant. The influence of the higher permissible metal blade temperature in gas turbine on the electric efficiency of the gas turbine as well as the entire combined cycle power plant was also shown. It has also been proven that using industry - known solutions such as steam cooling and sequential combustion, the net electric efficiency of a combined cycle power plant can reach 0.63–0.65.

Suggested Citation

  • Kotowicz, Janusz & Brzęczek, Mateusz, 2018. "Analysis of increasing efficiency of modern combined cycle power plant: A case study," Energy, Elsevier, vol. 153(C), pages 90-99.
  • Handle: RePEc:eee:energy:v:153:y:2018:i:c:p:90-99
    DOI: 10.1016/j.energy.2018.04.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218306340
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohapatra, Alok Ku & Sanjay,, 2014. "Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance," Energy, Elsevier, vol. 68(C), pages 191-203.
    2. Bakhshmand, Sina Kazemi & Saray, Rahim Khoshbakhti & Bahlouli, Keyvan & Eftekhari, Hajar & Ebrahimi, Afshin, 2015. "Exergoeconomic analysis and optimization of a triple-pressure combined cycle plant using evolutionary algorithm," Energy, Elsevier, vol. 93(P1), pages 555-567.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janusz Kotowicz & Mateusz Brzęczek & Aleksandra Walewska & Kamila Szykowska, 2022. "Methanol Production in the Brayton Cycle," Energies, MDPI, vol. 15(4), pages 1-14, February.
    2. Ju-Yeol Ryu & Sungho Park & Changhyeong Lee & Seonghyeon Hwang & Jongwoong Lim, 2023. "Techno-Economic Analysis of Hydrogen–Natural Gas Blended Fuels for 400 MW Combined Cycle Power Plants (CCPPs)," Energies, MDPI, vol. 16(19), pages 1-19, September.
    3. Karol Tucki & Olga Orynycz & Mateusz Mitoraj-Wojtanek, 2020. "Perspectives for Mitigation of CO 2 Emission due to Development of Electromobility in Several Countries," Energies, MDPI, vol. 13(16), pages 1-24, August.
    4. Wang, Xiao & Sun, Xiao-Xue & Chu, Shu-Chuan & Watada, Junzo & Pan, Jeng-Shyang, 2023. "Improved butterfly optimization algorithm applied to prediction of combined cycle power plant," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 337-353.
    5. Shi, Tao & Zhou, Jianzhao & Ren, Jingzheng & Ayub, Yousaf & Yu, Haoshui & Shen, Weifeng & Li, Qiao & Yang, Ao, 2023. "Co-valorisation of sewage sludge and poultry litter waste for hydrogen production: Gasification process design, sustainability-oriented optimization, and systematic assessment," Energy, Elsevier, vol. 272(C).
    6. Madejski, Paweł & Żymełka, Piotr, 2020. "Calculation methods of steam boiler operation factors under varying operating conditions with the use of computational thermodynamic modeling," Energy, Elsevier, vol. 197(C).
    7. Kotowicz, Janusz & Brzęczek, Mateusz, 2019. "Comprehensive multivariable analysis of the possibility of an increase in the electrical efficiency of a modern combined cycle power plant with and without a CO2 capture and compression installations ," Energy, Elsevier, vol. 175(C), pages 1100-1120.
    8. Guido Marseglia & Blanca Fernandez Vasquez-Pena & Carlo Maria Medaglia & Ricardo Chacartegui, 2020. "Alternative Fuels for Combined Cycle Power Plants: An Analysis of Options for a Location in India," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    9. Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Thermodynamic Cycle Concepts for High-Efficiency Power Plants. Part B: Prosumer and Distributed Power Industry," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    10. Dias Raybekovich Umyshev & Eduard Vladislavovich Osipov & Andrey Anatolievich Kibarin & Maxim Sergeyevich Korobkov & Tatyana Viktorovna Khodanova & Zhansaya Serikkyzy Duisenbek, 2023. "Techno-Economic Analysis of the Modernization Options of a Gas Turbine Power Plant Using Aspen HYSYS," Energies, MDPI, vol. 16(6), pages 1-22, March.
    11. Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.
    12. Kotowicz, Janusz & Brzęczek, Mateusz & Job, Marcin, 2018. "The thermodynamic and economic characteristics of the modern combined cycle power plant with gas turbine steam cooling," Energy, Elsevier, vol. 164(C), pages 359-376.
    13. Luberti, Mauro & Gowans, Robert & Finn, Patrick & Santori, Giulio, 2022. "An estimate of the ultralow waste heat available in the European Union," Energy, Elsevier, vol. 238(PC).
    14. Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski & Anna Bączyk, 2019. "Thermodynamic Cycle Concepts for High-Efficiency Power Plans. Part A: Public Power Plants 60+," Sustainability, MDPI, vol. 11(2), pages 1-11, January.
    15. Vedran Mrzljak & Igor Poljak & Maro Jelić & Jasna Prpić-Oršić, 2023. "Thermodynamic Analysis and Improvement Potential of Helium Closed Cycle Gas Turbine Power Plant at Four Loads," Energies, MDPI, vol. 16(15), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yongping & Bai, Ziwei & Zhang, Guoqiang & Li, Yongyi & Wang, Ziyu & Yu, Guangying, 2019. "Design/off-design performance simulation and discussion for the gas turbine combined cycle with inlet air heating," Energy, Elsevier, vol. 178(C), pages 386-399.
    2. Obida Zeitoun, 2021. "Two-Stage Evaporative Inlet Air Gas Turbine Cooling," Energies, MDPI, vol. 14(5), pages 1-17, March.
    3. Najjar, Yousef S.H. & Abubaker, Ahmad M. & El-Khalil, Ahmad F.S., 2015. "Novel inlet air cooling with gas turbine engines using cascaded waste-heat recovery for green sustainable energy," Energy, Elsevier, vol. 93(P1), pages 770-785.
    4. Oko, C.O.C. & Njoku, I.H., 2017. "Performance analysis of an integrated gas-, steam- and organic fluid-cycle thermal power plant," Energy, Elsevier, vol. 122(C), pages 431-443.
    5. Mahdi Deymi-Dashtebayaz & Parisa Kazemiani-Najafabad, 2019. "Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery," Energy & Environment, , vol. 30(3), pages 481-498, May.
    6. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    7. Comodi, G. & Renzi, M. & Caresana, F. & Pelagalli, L., 2015. "Enhancing micro gas turbine performance in hot climates through inlet air cooling vapour compression technique," Applied Energy, Elsevier, vol. 147(C), pages 40-48.
    8. Taimoor, Aqeel Ahmad & Muhammad, Ayyaz & Saleem, Waqas & Zain-ul-abdein, Muhammad, 2016. "Humidified exhaust recirculation for efficient combined cycle gas turbines," Energy, Elsevier, vol. 106(C), pages 356-366.
    9. Zhang, Yuanzhe & Liu, Pei & Li, Zheng, 2023. "Gas turbine off-design behavior modelling and operation windows analysis under different ambient conditions," Energy, Elsevier, vol. 262(PA).
    10. Bahlouli, Keyvan & Khoshbakhti Saray, Rahim, 2016. "Energetic and exergetic analyses of a new energy system for heating and power production purposes," Energy, Elsevier, vol. 106(C), pages 390-399.
    11. Wang, Ke & Fan, Wei & Lu, Wei & Chen, Fan & Zhang, Qibin & Yan, Chuanjun, 2014. "Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process," Energy, Elsevier, vol. 71(C), pages 605-614.
    12. Mohammad Hossein Ahmadi & Seyed Ali Banihashem & Mahyar Ghazvini & Milad Sadeghzadeh, 2018. "Thermo-economic and exergy assessment and optimization of performance of a hydrogen production system by using geothermal energy," Energy & Environment, , vol. 29(8), pages 1373-1392, December.
    13. Katulić, Stjepko & Čehil, Mislav & Schneider, Daniel Rolph, 2018. "Thermodynamic efficiency improvement of combined cycle power plant's bottom cycle based on organic working fluids," Energy, Elsevier, vol. 147(C), pages 36-50.
    14. Çetin, Gürcan & Keçebaş, Ali, 2021. "Optimization of thermodynamic performance with simulated annealing algorithm: A geothermal power plant," Renewable Energy, Elsevier, vol. 172(C), pages 968-982.
    15. Kotowicz, Janusz & Job, Marcin & Brzęczek, Mateusz, 2015. "The characteristics of ultramodern combined cycle power plants," Energy, Elsevier, vol. 92(P2), pages 197-211.
    16. Rossi, Iacopo & Sorce, Alessandro & Traverso, Alberto, 2017. "Gas turbine combined cycle start-up and stress evaluation: A simplified dynamic approach," Applied Energy, Elsevier, vol. 190(C), pages 880-890.
    17. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Thermoeconomic investigation of power utilities: Intercooled recuperated gas turbine cycle featuring cooled turbine blades," Energy, Elsevier, vol. 138(C), pages 490-499.
    18. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomic analysis of basic and reheat gas turbine with air film blade cooling," Energy, Elsevier, vol. 132(C), pages 160-170.
    19. Behnam Roshanzadeh & Ashkan Asadi & Gowtham Mohan, 2023. "Technical and Economic Feasibility Analysis of Solar Inlet Air Cooling Systems for Combined Cycle Power Plants," Energies, MDPI, vol. 16(14), pages 1-23, July.
    20. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:153:y:2018:i:c:p:90-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.