IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v143y2018icp212-218.html
   My bibliography  Save this article

Experimental study on the influence of the flame retardants on the flammability of R1234yf

Author

Listed:
  • Feng, Biao
  • Yang, Zhao
  • Zhai, Rui

Abstract

R1234yf has been considered as an alternative refrigerant with the low global warming potential (GWP), but it is flammable. Therefore, it is necessary to study the reduction or inhibition of flammability of R1234yf by different flame retardants. This paper mainly contributed to the influence of two kinds of flame retardants on the flammability of R1234yf. Firstly, the flammability limits of R1234yf and the mixtures of R1234yf/R227ea and R1234yf/R134a were tested out. Then the relationship between their flammability limits characteristics with the ratio of the flame retardants to R1234yf were evaluated by the fitted equations. The critical suppression ratios of R227ea/R1234yf and R134a/R1234yf were obtained. The results indicated that the inhibitory effect of R227ea on R1234yf was better than that of R134a by comparative analysis. Finally, the flame colors and flame propagation velocity characteristics of R1234yf before and after the addition flame retardants were researched and analyzed. The research achievement will be of universal guiding significance for the security application of R1234yf.

Suggested Citation

  • Feng, Biao & Yang, Zhao & Zhai, Rui, 2018. "Experimental study on the influence of the flame retardants on the flammability of R1234yf," Energy, Elsevier, vol. 143(C), pages 212-218.
  • Handle: RePEc:eee:energy:v:143:y:2018:i:c:p:212-218
    DOI: 10.1016/j.energy.2017.10.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217317838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.10.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Biao & Yang, Zhao & Zhai, Rui, 2017. "Experimental research on the concentration characteristics of R32 and R161′ combustion product HF," Energy, Elsevier, vol. 125(C), pages 671-680.
    2. Yang, Zhao & Wu, Xi & Tian, Tian, 2015. "Flammability of Trans-1, 3, 3, 3-tetrafluoroprop-1-ene and its binary blends," Energy, Elsevier, vol. 91(C), pages 386-392.
    3. Wang, Chi-Chuan, 2013. "An overview for the heat transfer performance of HFO-1234yf," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 444-453.
    4. Zilio, Claudio & Brown, J. Steven & Schiochet, Giovanni & Cavallini, Alberto, 2011. "The refrigerant R1234yf in air conditioning systems," Energy, Elsevier, vol. 36(10), pages 6110-6120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Zhen & Luo, Jielin & Zou, Dexin & Yang, Kaiyin & Wang, Qin & Chen, Guangming, 2023. "Experimental investigation on the inhibition of flame retardants on the flammability of R1234ze(E)," Energy, Elsevier, vol. 263(PE).
    2. Xin, Liyong & Liu, Chao & Tan, Luxi & Xu, Xiaoxiao & Li, Qibin & Huo, Erguang & Sun, Kuan, 2021. "Thermal stability and pyrolysis products of HFO-1234yf as an environment-friendly working fluid for Organic Rankine Cycle," Energy, Elsevier, vol. 228(C).
    3. Xin, Liyong & Yu, Wei & Liu, Chao & Liu, Lang & Wang, Shukun & Li, Xiaoxiao & Liu, Yu, 2023. "Thermal stability of a mixed working fluid (R513A) for organic Rankine cycle," Energy, Elsevier, vol. 263(PF).
    4. Chen, Yubo & Yang, Zhao & Zhang, Yong & He, Hongxia & Li, Jie, 2023. "Combustion and interaction mechanism of 2,3,3,3-tetrafluoropropene/1,1,1,2-tetrafluoroethane as an environmentally friendly mixed working fluid," Energy, Elsevier, vol. 284(C).
    5. Bartosz Gil & Jacek Kasperski, 2018. "Efficiency Evaluation of the Ejector Cooling Cycle using a New Generation of HFO/HCFO Refrigerant as a R134a Replacement," Energies, MDPI, vol. 11(8), pages 1-17, August.
    6. Kutub Uddin & Bidyut Baran Saha, 2022. "An Overview of Environment-Friendly Refrigerants for Domestic Air Conditioning Applications," Energies, MDPI, vol. 15(21), pages 1-24, October.
    7. Zhai, Rui & Yang, Zhao & Chen, Yubo & Feng, Biao & Lv, Zijian & Zhao, Wenzhong, 2019. "Theoretical and experimental studies on the combustion mechanism of Trans-1, 3, 3, 3-tetrafluoroprop-1-ene," Energy, Elsevier, vol. 189(C).
    8. Dennis K. Kim & Peter B. Sunderland, 2020. "Viability of Various Sources to Ignite A2L Refrigerants," Energies, MDPI, vol. 14(1), pages 1-10, December.
    9. Mota-Babiloni, Adrián & Belman-Flores, J.M. & Makhnatch, Pavel & Navarro-Esbrí, Joaquín & Barroso-Maldonado, J.M., 2018. "Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system," Energy, Elsevier, vol. 162(C), pages 99-110.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mota-Babiloni, Adrián & Belman-Flores, J.M. & Makhnatch, Pavel & Navarro-Esbrí, Joaquín & Barroso-Maldonado, J.M., 2018. "Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system," Energy, Elsevier, vol. 162(C), pages 99-110.
    2. Zhao, Zhen & Luo, Jielin & Zou, Dexin & Yang, Kaiyin & Wang, Qin & Chen, Guangming, 2023. "Experimental investigation on the inhibition of flame retardants on the flammability of R1234ze(E)," Energy, Elsevier, vol. 263(PE).
    3. Chen, Yubo & Yang, Zhao & Lv, Zijian & Zhang, Yong & Li, Jie & Fei, Teng, 2023. "Combustion mechanism and product characteristics of 2,3,3,3-tetrafluoropropene as an environmentally friendly working fluid for organic Rankine cycle," Energy, Elsevier, vol. 268(C).
    4. Feng, Biao & Yang, Zhao & Zhai, Rui, 2017. "Experimental research on the concentration characteristics of R32 and R161′ combustion product HF," Energy, Elsevier, vol. 125(C), pages 671-680.
    5. Huo, Erguang & Liu, Chao & Xu, Xiaoxiao & Li, Qibin & Dang, Chaobin & Wang, Shukun & Zhang, Cheng, 2019. "The oxidation decom position mechanisms of HFO-1336mzz(Z) as an environmentally friendly refrigerant in O2/H2O environment," Energy, Elsevier, vol. 185(C), pages 1154-1162.
    6. Kasaeian, Alibakhsh & Hosseini, Seyed Mohsen & Sheikhpour, Mojgan & Mahian, Omid & Yan, Wei-Mon & Wongwises, Somchai, 2018. "Applications of eco-friendly refrigerants and nanorefrigerants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 91-99.
    7. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Schampheleire, S. & De Paepe, M., 2013. "Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system," Applied Energy, Elsevier, vol. 111(C), pages 871-881.
    8. Paul Byrne, 2022. "Research Summary and Literature Review on Modelling and Simulation of Heat Pumps for Simultaneous Heating and Cooling for Buildings," Energies, MDPI, vol. 15(10), pages 1-43, May.
    9. Choi, Byung Chul & Park, June Sung & Ghoniem, Ahmed F., 2016. "Characteristics of outwardly propagating spherical flames of R134a(C2H2F4)/CH4/O2/N2 mixtures in a constant volume combustion chamber," Energy, Elsevier, vol. 95(C), pages 517-527.
    10. Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
    11. Li, Huashan & Cao, Fei & Bu, Xianbiao & Wang, Lingbao & Wang, Xianlong, 2014. "Performance characteristics of R1234yf ejector-expansion refrigeration cycle," Applied Energy, Elsevier, vol. 121(C), pages 96-103.
    12. Chen, Yubo & Yang, Zhao & Zhang, Yong & He, Hongxia & Li, Jie, 2023. "Combustion and interaction mechanism of 2,3,3,3-tetrafluoropropene/1,1,1,2-tetrafluoroethane as an environmentally friendly mixed working fluid," Energy, Elsevier, vol. 284(C).
    13. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    14. Devecioğlu, Atilla G. & Oruç, Vedat, 2018. "Improvement on the energy performance of a refrigeration system adapting a plate-type heat exchanger and low-GWP refrigerants as alternatives to R134a," Energy, Elsevier, vol. 155(C), pages 105-116.
    15. Pabon, Juan J.G. & Khosravi, Ali & Malekan, M. & Sandoval, Oscar R., 2020. "Modeling and energy analysis of a linear concentrating photovoltaic system cooled by two-phase mechanical pumped loop system," Renewable Energy, Elsevier, vol. 157(C), pages 273-289.
    16. Aprea, C. & Greco, A. & Maiorino, A., 2012. "An experimental evaluation of the greenhouse effect in the substitution of R134a with CO2," Energy, Elsevier, vol. 45(1), pages 753-761.
    17. Qyyum, Muhammad Abdul & Lee, Moonyong, 2018. "Hydrofluoroolefin-based novel mixed refrigerant for energy efficient and ecological LNG production," Energy, Elsevier, vol. 157(C), pages 483-492.
    18. Mota-Babiloni, Adrián & Navarro-Esbrí, Joaquín & Barragán-Cervera, Ángel & Molés, Francisco & Peris, Bernardo, 2015. "Drop-in analysis of an internal heat exchanger in a vapour compression system using R1234ze(E) and R450A as alternatives for R134a," Energy, Elsevier, vol. 90(P2), pages 1636-1644.
    19. Kutub Uddin & Bidyut Baran Saha, 2022. "An Overview of Environment-Friendly Refrigerants for Domestic Air Conditioning Applications," Energies, MDPI, vol. 15(21), pages 1-24, October.
    20. Chagnon-Lessard, Noémie & Copeland, Colin & Mathieu-Potvin, François & Gosselin, Louis, 2020. "Maximizing specific work output extracted from engine exhaust with novel inverted Brayton cycles over a large range of operating conditions," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:143:y:2018:i:c:p:212-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.