IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp1324-1331.html
   My bibliography  Save this article

An effective strategy for the preparation of nitrogen-doped carbon from Imperata cylindrica panicle and its use as a metal-free catalyst for the oxygen reduction reaction

Author

Listed:
  • Yuan, Wenjing
  • Xu, Wanghua
  • Xie, Anjian
  • Zhang, Hui
  • Wang, Cuiping
  • Shen, Yuhua

Abstract

Developing an effective strategy for the large-scale preparation of metal-free catalysts for the oxygen reduction reaction (ORR) is a great challenge. The use of a natural biomass as a green and sustainable precursor for the synthesis of functional materials has attracted significant interest recently. We have successfully synthesized nitrogen-doped carbon as a high-activity catalyst by using Imperata cylindrica panicle as a raw material by combining a simple hydrothermal process with an effective nitrogen-doping technique for thermal annealing in an NH3 atmosphere. Compared to the control sample without nitrogen-doping, the typical product (total N content 2.2 at %) shows a higher catalytic activity in terms of its positive onset potential (0.040 V, vs. Hg/HgO), high current density (5.73 mA cm−2 at −0.8 V vs. Hg/HgO) and approximate four-electron reaction pathway in alkaline media (3.87, at −0.8 V vs. Hg/HgO). In acidic media, these values are approximately 0.500 V (vs. Ag/AgCl), 5.03 mA cm−2 and 3.94 (at −0.2 V vs. Ag/AgCl), respectively. The product also shows superior tolerance to methanol poisoning and outstanding durability in both alkaline and acidic media. In addition, our novel approach to the synthesis of nitrogen-doped carbon materials, in terms of the raw material and preparation method, may guide future efforts for the preparation of carbon-based materials.

Suggested Citation

  • Yuan, Wenjing & Xu, Wanghua & Xie, Anjian & Zhang, Hui & Wang, Cuiping & Shen, Yuhua, 2017. "An effective strategy for the preparation of nitrogen-doped carbon from Imperata cylindrica panicle and its use as a metal-free catalyst for the oxygen reduction reaction," Energy, Elsevier, vol. 141(C), pages 1324-1331.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1324-1331
    DOI: 10.1016/j.energy.2017.11.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217319412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.11.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chou, Chang-Chen & Liu, Cheng-Hong & Chen, Bing-Hung, 2014. "Effects of reduction temperature and pH value of polyol process on reduced graphene oxide supported Pt electrocatalysts for oxygen reduction reaction," Energy, Elsevier, vol. 70(C), pages 231-238.
    2. Chaisubanan, Napapat & Maniwan, Witchaya & Hunsom, Mali, 2017. "Effect of heat-treatment on the performance of PtM/C (M = Cr, Pd, Co) catalysts towards the oxygen reduction reaction in PEM fuel cell," Energy, Elsevier, vol. 127(C), pages 454-461.
    3. Stoševski, Ivan & Krstić, Jelena & Milikić, Jadranka & Šljukić, Biljana & Kačarević-Popović, Zorica & Mentus, Slavko & Miljanić, Šćepan, 2016. "Radiolitically synthesized nano Ag/C catalysts for oxygen reduction and borohydride oxidation reactions in alkaline media, for potential applications in fuel cells," Energy, Elsevier, vol. 101(C), pages 79-90.
    4. Sahoo, Madhumita & Ramaprabhu, S., 2017. "Nitrogen and sulfur co-doped porous carbon – is an efficient electrocatalyst as platinum or a hoax for oxygen reduction reaction in acidic environment PEM fuel cell?," Energy, Elsevier, vol. 119(C), pages 1075-1083.
    5. Kakaei, Karim & Gharibi, Hussien, 2014. "Palladium nanoparticle catalysts synthesis on graphene in sodium dodecyl sulfate for oxygen reduction reaction," Energy, Elsevier, vol. 65(C), pages 166-171.
    6. Wang, Wei & Song, Junnan & Kang, Yumao & Chai, Dan & Zhao, Rui & Lei, Ziqiang, 2017. "Sm2O3 embedded in nitrogen doped carbon with mosaic structure: An effective catalyst for oxygen reduction reaction," Energy, Elsevier, vol. 133(C), pages 115-120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mousavi, Seyed Ali & Mehrpooya, Mehdi, 2021. "Fabrication of copper centered metal organic framework and nitrogen, sulfur dual doped graphene oxide composite as a novel electrocatalyst for oxygen reduction reaction," Energy, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirzaei, Farokh & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2017. "Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell," Energy, Elsevier, vol. 138(C), pages 696-705.
    2. Kiyani, Roya & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: Synthesis, characterization and electrocatalytic performance," Energy, Elsevier, vol. 113(C), pages 1162-1173.
    3. Yuan, Wenjing & Xie, Anjian & Chen, Ping & Huang, Fangzhi & Li, Shikuo & Shen, Yuhua, 2018. "Combustion reaction-derived nitrogen-doped porous carbon as an effective metal-Free catalyst for the oxygen reduction reaction," Energy, Elsevier, vol. 152(C), pages 333-340.
    4. Pan, Siyu & Cai, Zhuang & Yang, Liu & Tang, Bo & Xu, Xin & Chen, Hun & Ran, Lingling & Jing, Baojian & Zou, Jinlong, 2018. "Exposure of sufficient edge sites on well-crystallized MoSe2 induced by nitrogen doping (Mo−Nx) for Pt: Enhanced co-catalytic activity and methanol tolerance for oxygen reduction," Energy, Elsevier, vol. 159(C), pages 11-20.
    5. Miao, He & Wang, Zhouhang & Wang, Qin & Sun, Shanshan & Xue, Yejian & Wang, Fu & Zhao, Jiapei & Liu, Zhaoping & Yuan, Jinliang, 2018. "A new family of Mn-based perovskite (La1-xYxMnO3) with improved oxygen electrocatalytic activity for metal-air batteries," Energy, Elsevier, vol. 154(C), pages 561-570.
    6. Rivera-Lugo, Yazmín Y. & Salazar-Gastélum, Moisés I. & López-Rosas, Deisly M. & Reynoso-Soto, Edgar A. & Pérez-Sicairos, Sergio & Velraj, Samgopiraj & Flores-Hernández, José R. & Félix-Navarro, Rosa M, 2018. "Effect of template, reaction time and platinum concentration in the synthesis of PtCu/CNT catalyst for PEMFC applications," Energy, Elsevier, vol. 148(C), pages 561-570.
    7. Yuan, Wenjing & Xie, Anjian & Li, Shikuo & Huang, Fangzhi & Zhang, Peigen & Shen, Yuhua, 2016. "High-activity oxygen reduction catalyst based on low-cost bagasse, nitrogen and large specific surface area," Energy, Elsevier, vol. 115(P1), pages 397-403.
    8. Li, Li & Zheng, Keqing & Ni, Meng & Leung, Michael K.H. & Xuan, Jin, 2015. "Partial modification of flow-through porous electrodes in microfluidic fuel cell," Energy, Elsevier, vol. 88(C), pages 563-571.
    9. Hidalgo, Diana & Tommasi, Tonia & Cauda, Valentina & Porro, Samuele & Chiodoni, Angelica & Bejtka, Katarzyna & Ruggeri, Bernardo, 2014. "Streamlining of commercial Berl saddles: A new material to improve the performance of microbial fuel cells," Energy, Elsevier, vol. 71(C), pages 615-623.
    10. Liu, Zhenning & Li, Zhiyuan & Ma, Jian & Dong, Xu & Ku, Wen & Wang, Mi & Sun, Hang & Liang, Song & Lu, Guolong, 2018. "Nitrogen and cobalt-doped porous biocarbon materials derived from corn stover as efficient electrocatalysts for aluminum-air batteries," Energy, Elsevier, vol. 162(C), pages 453-459.
    11. Stoševski, Ivan & Krstić, Jelena & Milikić, Jadranka & Šljukić, Biljana & Kačarević-Popović, Zorica & Mentus, Slavko & Miljanić, Šćepan, 2016. "Radiolitically synthesized nano Ag/C catalysts for oxygen reduction and borohydride oxidation reactions in alkaline media, for potential applications in fuel cells," Energy, Elsevier, vol. 101(C), pages 79-90.
    12. Kakaei, Karim & Rahnavardi, Mohammad, 2021. "Synthesis of nitrogen-doped reduced graphene oxide and its decoration with high efficiency palladium nanoparticles for direct ethanol fuel cell," Renewable Energy, Elsevier, vol. 163(C), pages 1277-1286.
    13. Jaimes-Paez, C.D. & Morallón, E. & Cazorla-Amorós, D., 2023. "Few layers graphene-based electrocatalysts for ORR synthesized by electrochemical exfoliation methods," Energy, Elsevier, vol. 278(PA).
    14. Saffarian, Mohammad Reza & Moravej, Mojtaba & Doranehgard, Mohammad Hossein, 2020. "Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid," Renewable Energy, Elsevier, vol. 146(C), pages 2316-2329.
    15. Ojani, Reza & Hasheminejad, Ehteram & Raoof, Jahan Bakhsh, 2015. "Direct growth of 3D flower-like Pt nanostructures by a template-free electrochemical route as an efficient electrocatalyst for methanol oxidation reaction," Energy, Elsevier, vol. 90(P1), pages 1122-1131.
    16. Liu, Yu-Long & Li, Yang & Si, Yin-Fang & Fu, Jian & Dong, Hao & Sun, Shan-Shan & Zhang, Fan & She, Yue-Hui & Zhang, Zhi-Quan, 2023. "Synthesis of nanosilver particles mediated by microbial surfactants and its enhancement of crude oil recovery," Energy, Elsevier, vol. 272(C).
    17. Yang, H.N. & Lee, D.C. & Park, K.W. & Kim, W.J., 2015. "Platinum–boron doped graphene intercalated by carbon black for cathode catalyst in proton exchange membrane fuel cell," Energy, Elsevier, vol. 89(C), pages 500-510.
    18. Xue Li & Guolei Liu & Han Zheng & Kuizhao Sun & Linna Wan & Jing Cao & Saira Asif & Yue Cao & Weimeng Si & Fagang Wang & Awais Bokhari, 2022. "Recent Advances on Heteroatom-Doped Porous Carbon—Based Electrocatalysts for Oxygen Reduction Reaction," Energies, MDPI, vol. 16(1), pages 1-15, December.
    19. Bhuvanendran, Narayanamoorthy & Ravichandran, Sabarinathan & Jayaseelan, Santhana Sivabalan & Xu, Qian & Khotseng, Lindiwe & Su, Huaneng, 2020. "Improved bi-functional oxygen electrocatalytic performance of Pt–Ir alloy nanoparticles embedded on MWCNT with Pt-enriched surfaces," Energy, Elsevier, vol. 211(C).
    20. Lee, W.H. & Yang, H.N. & Park, K.W. & Choi, B.S. & Yi, S.C. & Kim, W.J., 2016. "Synergistic effect of boron/nitrogen co-doping into graphene and intercalation of carbon black for Pt-BCN-Gr/CB hybrid catalyst on cell performance of polymer electrolyte membrane fuel cell," Energy, Elsevier, vol. 96(C), pages 314-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1324-1331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.