IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v272y2023ics0360544223005170.html
   My bibliography  Save this article

Synthesis of nanosilver particles mediated by microbial surfactants and its enhancement of crude oil recovery

Author

Listed:
  • Liu, Yu-Long
  • Li, Yang
  • Si, Yin-Fang
  • Fu, Jian
  • Dong, Hao
  • Sun, Shan-Shan
  • Zhang, Fan
  • She, Yue-Hui
  • Zhang, Zhi-Quan

Abstract

In view of the increasingly high demand for environmental protection in oil fields, new environmentally friendly materials that can replace harmful chemicals must be urgently studied. In this study, the biofriendly reducing agent “ascorbic acid” was selected to prepare nanosilver, and a biological nanosilver composite (Bio-Ag) was synthesized using the fermentation supernatants of Candida and P. aeruginosa, which were refrigerated in the laboratory as modifiers and dispersants. Furthermore, sand-filled pipe and micromodel oil displacement experiments were conducted. XRD results confirmed the formation of nanosilver, and its crystal structure was FCC. SEM results showed that the size of the nanosilver was 15–60 nm, and the shape was irregular ellipsoid, angular, or rod shaped. FT-IR results showed that microbial metabolism produced bioactive substances, such as glycolipids and peptides, which were modified on the surface of the nanoparticles. In the laboratory, displacement experiments of nanosilver dispersed by sodium dodecyl sulfate (SDS-Ag), Candida fermentation supernatant (C–Ag), and Pseudomonas aeruginosa (P–Ag) were conducted, and the oil recovery increased by 13.6%, 19.49%, and 11.4%,respectively. Results of the microdisplacement experiment showed that nanoparticles had strong adsorption capacity in the pore throat and had good stripping effect on residual oil.

Suggested Citation

  • Liu, Yu-Long & Li, Yang & Si, Yin-Fang & Fu, Jian & Dong, Hao & Sun, Shan-Shan & Zhang, Fan & She, Yue-Hui & Zhang, Zhi-Quan, 2023. "Synthesis of nanosilver particles mediated by microbial surfactants and its enhancement of crude oil recovery," Energy, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:energy:v:272:y:2023:i:c:s0360544223005170
    DOI: 10.1016/j.energy.2023.127123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223005170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olajire, Abass A., 2014. "Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges," Energy, Elsevier, vol. 77(C), pages 963-982.
    2. Stoševski, Ivan & Krstić, Jelena & Milikić, Jadranka & Šljukić, Biljana & Kačarević-Popović, Zorica & Mentus, Slavko & Miljanić, Šćepan, 2016. "Radiolitically synthesized nano Ag/C catalysts for oxygen reduction and borohydride oxidation reactions in alkaline media, for potential applications in fuel cells," Energy, Elsevier, vol. 101(C), pages 79-90.
    3. Chang, Yuanhao & Xiao, Senbo & Ma, Rui & Zhang, Zhiliang & He, Jianying, 2022. "Atomistic insight into oil displacement on rough surface by Janus nanoparticles," Energy, Elsevier, vol. 245(C).
    4. Pushparaj, Karthika & Liu, Wen-Chao & Meyyazhagan, Arun & Orlacchio, Antonio & Pappusamy, Manikantan & Vadivalagan, Chithravel & Robert, Asirvatham Alwin & Arumugam, Vijaya Anand & Kamyab, Hesam & Kle, 2022. "Nano- from nature to nurture: A comprehensive review on facets, trends, perspectives and sustainability of nanotechnology in the food sector," Energy, Elsevier, vol. 240(C).
    5. Wang, Xiao-Tong & Liu, Bin & Li, Xi-Zhe & Lin, Wei & Li, Dong-An & Dong, Hao & Wang, Lei, 2022. "Biosurfactants produced by novel facultative-halophilic Bacillus sp. XT-2 with biodegradation of long chain n-alkane and the application for enhancing waxy oil recovery," Energy, Elsevier, vol. 240(C).
    6. Xiaofei Sun & Yanyu Zhang & Guangpeng Chen & Zhiyong Gai, 2017. "Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress," Energies, MDPI, vol. 10(3), pages 1-33, March.
    7. Fang, Yujia & Yang, Erlong & Guo, Songlin & Cui, Changyu & Zhou, Congcong, 2022. "Study on micro remaining oil distribution of polymer flooding in Class-II B oil layer of Daqing Oilfield," Energy, Elsevier, vol. 254(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Yuanhao & Xiao, Senbo & Ma, Rui & Zhang, Zhiliang & He, Jianying, 2022. "Atomistic insight into oil displacement on rough surface by Janus nanoparticles," Energy, Elsevier, vol. 245(C).
    2. Omid Mosalman Haghighi & Ghasem Zargar & Abbas Khaksar Manshad & Muhammad Ali & Mohammad Ali Takassi & Jagar A. Ali & Alireza Keshavarz, 2020. "Effect of Environment-Friendly Non-Ionic Surfactant on Interfacial Tension Reduction and Wettability Alteration; Implications for Enhanced Oil Recovery," Energies, MDPI, vol. 13(15), pages 1-18, August.
    3. Huoxin Luan & Zhaohui Zhou & Chongjun Xu & Lei Bai & Xiaoguang Wang & Lu Han & Qun Zhang & Gen Li, 2022. "Study on the Synergistic Effects between Petroleum Sulfonate and a Nonionic–Anionic Surfactant for Enhanced Oil Recovery," Energies, MDPI, vol. 15(3), pages 1-12, February.
    4. Kiyani, Roya & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: Synthesis, characterization and electrocatalytic performance," Energy, Elsevier, vol. 113(C), pages 1162-1173.
    5. Tariq Ali Chandio & Muhammad A. Manan & Khalil Rehman Memon & Ghulam Abbas & Ghazanfer Raza Abbasi, 2021. "Enhanced Oil Recovery by Hydrophilic Silica Nanofluid: Experimental Evaluation of the Impact of Parameters and Mechanisms on Recovery Potential," Energies, MDPI, vol. 14(18), pages 1-19, September.
    6. Hong He & Jingyu Fu & Baofeng Hou & Fuqing Yuan & Lanlei Guo & Zongyang Li & Qing You, 2018. "Investigation of Injection Strategy of Branched-Preformed Particle Gel/Polymer/Surfactant for Enhanced Oil Recovery after Polymer Flooding in Heterogeneous Reservoirs," Energies, MDPI, vol. 11(8), pages 1-17, July.
    7. Huiying Zhong & Weidong Zhang & Jing Fu & Jun Lu & Hongjun Yin, 2017. "The Performance of Polymer Flooding in Heterogeneous Type II Reservoirs—An Experimental and Field Investigation," Energies, MDPI, vol. 10(4), pages 1-19, April.
    8. Anastasia Ivanova & Azhar Kuandykova & Alexander Rodionov & Andrey Morkovkin & Alexander Burukhin & Alexey Cheremisin, 2023. "Pore-Scale Investigation of Low-Salinity Nanofluids on Wetting Properties of Oil Carbonate Reservoir Rocks Studied by X-ray Micro-Tomography," Energies, MDPI, vol. 16(3), pages 1-14, January.
    9. Mirzaei, Farokh & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2017. "Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell," Energy, Elsevier, vol. 138(C), pages 696-705.
    10. Liu, Zhenning & Li, Zhiyuan & Ma, Jian & Dong, Xu & Ku, Wen & Wang, Mi & Sun, Hang & Liang, Song & Lu, Guolong, 2018. "Nitrogen and cobalt-doped porous biocarbon materials derived from corn stover as efficient electrocatalysts for aluminum-air batteries," Energy, Elsevier, vol. 162(C), pages 453-459.
    11. Li, Jiangtao & Zhou, Xiaofeng & Gayubov, Abdumalik & Shamil, Sultanov, 2023. "Study on production performance characteristics of horizontal wells in low permeability and tight oil reservoirs," Energy, Elsevier, vol. 284(C).
    12. Sayed Ameenuddin Irfan & Afza Shafie & Noorhana Yahya & Nooraini Zainuddin, 2019. "Mathematical Modeling and Simulation of Nanoparticle-Assisted Enhanced Oil Recovery—A Review," Energies, MDPI, vol. 12(8), pages 1-19, April.
    13. Xiuyu Wang & Fuqiong Wang & Mohanad A. M. Taleb & Zhiyuan Wen & Xiulin Chen, 2022. "A Review of the Seepage Mechanisms of Heavy Oil Emulsions during Chemical Flooding," Energies, MDPI, vol. 15(22), pages 1-19, November.
    14. Iliana Dompara & Angeliki Maragkaki & Nikolaos Papastefanakis & Christina Floraki & Dimitra Vernardou & Thrassyvoulos Manios, 2023. "Effects of Different Materials on Biogas Production during Anaerobic Digestion of Food Waste," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    15. Park, Hyemin & Han, Jinju & Sung, Wonmo, 2015. "Effect of polymer concentration on the polymer adsorption-induced permeability reduction in low permeability reservoirs," Energy, Elsevier, vol. 84(C), pages 666-671.
    16. Saffarian, Mohammad Reza & Moravej, Mojtaba & Doranehgard, Mohammad Hossein, 2020. "Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid," Renewable Energy, Elsevier, vol. 146(C), pages 2316-2329.
    17. Yang, Renfeng & Jiang, Ruizhong & Guo, Sheng & Chen, Han & Tang, Shasha & Duan, Rui, 2021. "Analytical study on the Critical Water Cut for Water Plugging: Water cut increasing control and production enhancement," Energy, Elsevier, vol. 214(C).
    18. Si Le Van & Bo Hyun Chon, 2016. "Artificial Neural Network Model for Alkali-Surfactant-Polymer Flooding in Viscous Oil Reservoirs: Generation and Application," Energies, MDPI, vol. 9(12), pages 1-20, December.
    19. Aghil Moslemizadeh & Hossein Khayati & Mohammad Madani & Mehdi Ghasemi & Khalil Shahbazi & Sohrab Zendehboudi & Azza Hashim Abbas, 2021. "A Systematic Study to Assess Displacement Performance of a Naturally-Derived Surfactant in Flow Porous Systems," Energies, MDPI, vol. 14(24), pages 1-21, December.
    20. Zhang, Jun, 2023. "Performance of high temperature steam injection in horizontal wells of heavy oil reservoirs," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:272:y:2023:i:c:s0360544223005170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.