IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3820-d821396.html
   My bibliography  Save this article

A Critical Review of Alkaline Flooding: Mechanism, Hybrid Flooding Methods, Laboratory Work, Pilot Projects, and Field Applications

Author

Listed:
  • Abdelaziz L. Khlaifat

    (Department of Petroleum and Energy Engineering, School of Sciences & Engineering, American University in Cairo, Cairo 11835, Egypt)

  • Duaa Dakhlallah

    (Institute of Global Health and Human Ecology, School of Sciences & Engineering, American University in Cairo, Cairo 11835, Egypt)

  • Faraz Sufyan

    (Department of Petroleum Technology, University of Karachi, Karachi 75270, Pakistan)

Abstract

Over time, the dependence on oil has increased to meet industrial and domestic needs. Enhanced oil recovery (EOR) techniques in this regard have captured immense growth as EOR is not only used to increase the oil recovery but also to augment the sweep efficiency. Several techniques over the past decades have been used to improve oil recovery with cost-effectiveness. Cost-effective alkaline flooding has been effective for those oil reservoirs with a high total acid number. In this review, the significance of alkaline flooding has been discussed in detail, as well as the features of alkaline flooding in comparison to other modes of flooding. This review entails (1) alkaline flooding, (2) hybrid modes of injection, (3) experimental work, (4) pilot projects, (5) screening criteria, and (6) field applications. The findings of this study can help increase the understanding of alkaline flooding and provide a holistic view of the hybrid modes of flooding.

Suggested Citation

  • Abdelaziz L. Khlaifat & Duaa Dakhlallah & Faraz Sufyan, 2022. "A Critical Review of Alkaline Flooding: Mechanism, Hybrid Flooding Methods, Laboratory Work, Pilot Projects, and Field Applications," Energies, MDPI, vol. 15(10), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3820-:d:821396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3820/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3820/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Druetta, P. & Raffa, P. & Picchioni, F., 2019. "Chemical enhanced oil recovery and the role of chemical product design," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Olajire, Abass A., 2014. "Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges," Energy, Elsevier, vol. 77(C), pages 963-982.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiuyu Wang & Fuqiong Wang & Mohanad A. M. Taleb & Zhiyuan Wen & Xiulin Chen, 2022. "A Review of the Seepage Mechanisms of Heavy Oil Emulsions during Chemical Flooding," Energies, MDPI, vol. 15(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiying Zhong & Weidong Zhang & Jing Fu & Jun Lu & Hongjun Yin, 2017. "The Performance of Polymer Flooding in Heterogeneous Type II Reservoirs—An Experimental and Field Investigation," Energies, MDPI, vol. 10(4), pages 1-19, April.
    2. Si Le Van & Bo Hyun Chon, 2016. "Artificial Neural Network Model for Alkali-Surfactant-Polymer Flooding in Viscous Oil Reservoirs: Generation and Application," Energies, MDPI, vol. 9(12), pages 1-20, December.
    3. Yi Zhang & Jiexiang Wang & Peng Jia & Xiao Liu & Xuxu Zhang & Chang Liu & Xiangwei Bai, 2020. "Viscosity Loss and Hydraulic Pressure Drop on Multilayer Separate Polymer Injection in Concentric Dual-Tubing," Energies, MDPI, vol. 13(7), pages 1-20, April.
    4. Maaike Berger & Francesco Picchioni & Pablo Druetta, 2022. "Simulation of Polymer Chemical Enhanced Oil Recovery in Ghawar Field," Energies, MDPI, vol. 15(19), pages 1-31, October.
    5. Wang, Sijia & Li, Shaohua & Liu, Donglei & Shi, Menglan & Tong, Baocai & Cheng, Chengzu & Jiang, Lanlan & Song, Yongchen, 2023. "Study of the impact of various porous media on pore space utilization and CO2 storage by injection of microbubbles into oil reservoirs," Applied Energy, Elsevier, vol. 339(C).
    6. Azza Hashim Abbas & Obinna Markraphael Ajunwa & Birzhan Mazhit & Dmitriy A. Martyushev & Kamel Fahmi Bou-Hamdan & Ramzi A. Abd Alsaheb, 2022. "Evaluation of OKRA ( Abelmoschus esculentus ) Macromolecular Solution for Enhanced Oil Recovery in Kazakhstan Carbonate Reservoir," Energies, MDPI, vol. 15(18), pages 1-13, September.
    7. Huoxin Luan & Zhaohui Zhou & Chongjun Xu & Lei Bai & Xiaoguang Wang & Lu Han & Qun Zhang & Gen Li, 2022. "Study on the Synergistic Effects between Petroleum Sulfonate and a Nonionic–Anionic Surfactant for Enhanced Oil Recovery," Energies, MDPI, vol. 15(3), pages 1-12, February.
    8. Hong He & Jingyu Fu & Baofeng Hou & Fuqing Yuan & Lanlei Guo & Zongyang Li & Qing You, 2018. "Investigation of Injection Strategy of Branched-Preformed Particle Gel/Polymer/Surfactant for Enhanced Oil Recovery after Polymer Flooding in Heterogeneous Reservoirs," Energies, MDPI, vol. 11(8), pages 1-17, July.
    9. Xiuyu Wang & Fuqiong Wang & Mohanad A. M. Taleb & Zhiyuan Wen & Xiulin Chen, 2022. "A Review of the Seepage Mechanisms of Heavy Oil Emulsions during Chemical Flooding," Energies, MDPI, vol. 15(22), pages 1-19, November.
    10. Park, Hyemin & Han, Jinju & Sung, Wonmo, 2015. "Effect of polymer concentration on the polymer adsorption-induced permeability reduction in low permeability reservoirs," Energy, Elsevier, vol. 84(C), pages 666-671.
    11. Yang, Renfeng & Jiang, Ruizhong & Guo, Sheng & Chen, Han & Tang, Shasha & Duan, Rui, 2021. "Analytical study on the Critical Water Cut for Water Plugging: Water cut increasing control and production enhancement," Energy, Elsevier, vol. 214(C).
    12. Chang, Yuanhao & Xiao, Senbo & Ma, Rui & Zhang, Zhiliang & He, Jianying, 2022. "Atomistic insight into oil displacement on rough surface by Janus nanoparticles," Energy, Elsevier, vol. 245(C).
    13. Liu, Yu-Long & Li, Yang & Si, Yin-Fang & Fu, Jian & Dong, Hao & Sun, Shan-Shan & Zhang, Fan & She, Yue-Hui & Zhang, Zhi-Quan, 2023. "Synthesis of nanosilver particles mediated by microbial surfactants and its enhancement of crude oil recovery," Energy, Elsevier, vol. 272(C).
    14. Aghil Moslemizadeh & Hossein Khayati & Mohammad Madani & Mehdi Ghasemi & Khalil Shahbazi & Sohrab Zendehboudi & Azza Hashim Abbas, 2021. "A Systematic Study to Assess Displacement Performance of a Naturally-Derived Surfactant in Flow Porous Systems," Energies, MDPI, vol. 14(24), pages 1-21, December.
    15. Pablo Druetta & Francesco Picchioni, 2020. "Surfactant-Polymer Interactions in a Combined Enhanced Oil Recovery Flooding," Energies, MDPI, vol. 13(24), pages 1-23, December.
    16. Bin Huang & Wei Zhang & Rui Xu & Zhenzhong Shi & Cheng Fu & Ying Wang & Kaoping Song, 2017. "A Study on the Matching Relationship of Polymer Molecular Weight and Reservoir Permeability in ASP Flooding for Duanxi Reservoirs in Daqing Oil Field," Energies, MDPI, vol. 10(7), pages 1-10, July.
    17. Baghernezhad, Danial & Siavashi, Majid & Nakhaee, Ali, 2019. "Optimal scenario design of steam-assisted gravity drainage to enhance oil recovery with temperature and rate control," Energy, Elsevier, vol. 166(C), pages 610-623.
    18. Wang, Zhenjun & Xu, Yuanming, 2015. "Review on application of the recent new high-power ultrasonic transducers in enhanced oil recovery field in China," Energy, Elsevier, vol. 89(C), pages 259-267.
    19. Druetta, P. & Raffa, P. & Picchioni, F., 2019. "Chemical enhanced oil recovery and the role of chemical product design," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    20. Omid Mosalman Haghighi & Ghasem Zargar & Abbas Khaksar Manshad & Muhammad Ali & Mohammad Ali Takassi & Jagar A. Ali & Alireza Keshavarz, 2020. "Effect of Environment-Friendly Non-Ionic Surfactant on Interfacial Tension Reduction and Wettability Alteration; Implications for Enhanced Oil Recovery," Energies, MDPI, vol. 13(15), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3820-:d:821396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.