IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p454-d94705.html
   My bibliography  Save this article

The Performance of Polymer Flooding in Heterogeneous Type II Reservoirs—An Experimental and Field Investigation

Author

Listed:
  • Huiying Zhong

    (Key Laboratory for Enhanced Oil & Gas Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, China)

  • Weidong Zhang

    (Key Laboratory for Enhanced Oil & Gas Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, China)

  • Jing Fu

    (Department of Geological Sciences and Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA)

  • Jun Lu

    (McDougall School of Petroleum Engineering, University of Tulsa, Tulsa, OK 74104, USA)

  • Hongjun Yin

    (Key Laboratory for Enhanced Oil & Gas Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, China)

Abstract

The polymer flooding process has already been applied to the medium permeability type II reservoirs of the Daqing Oilfield (China) to enhance oil recovery. However, this process faces a number of challenges, such as the flooding efficiency, high injection pressure, formation blockage and damage, unbalanced absorption ratio, and economical justification. In this study, single-phase and two-phase flow experiments are performed to investigate polymer injection adaptability with natural cores of type II reservoirs. The enhanced oil recovery (EOR) effects of the polymer are studied by physical simulation experiments, and the results of application in an actual field are also presented. The results indicate that the flow characteristics and injection capability are dominated by the reservoir permeability in polymer flooding. Moreover, the adsorption of polymer molecules and the injection pressure gradient, which reflect formation damage, are affected more significantly by the concentration than by the molecular weight in type II reservoirs. Using the matching relationship, the injection-production process is stable, and additional oil recoveries of 10%–15% can be obtained in heterogeneous type II reservoirs with a high water saturation. This work is significant in that it further accelerates the application of polymer flooding EOR in medium permeability heterogeneous oilfields with high water saturation.

Suggested Citation

  • Huiying Zhong & Weidong Zhang & Jing Fu & Jun Lu & Hongjun Yin, 2017. "The Performance of Polymer Flooding in Heterogeneous Type II Reservoirs—An Experimental and Field Investigation," Energies, MDPI, vol. 10(4), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:454-:d:94705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/454/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olajire, Abass A., 2014. "Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges," Energy, Elsevier, vol. 77(C), pages 963-982.
    2. Si Le Van & Bo Hyun Chon, 2016. "The Performance of Surfactant-Polymer Flooding in Horizontal Wells Consisting of Multilayers in a Reservoir System," Energies, MDPI, vol. 9(4), pages 1-13, March.
    3. Zhong, Jie & Wang, Pan & Zhang, Yang & Yan, Youguo & Hu, Songqing & Zhang, Jun, 2013. "Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study," Energy, Elsevier, vol. 59(C), pages 295-300.
    4. Park, Hyemin & Han, Jinju & Sung, Wonmo, 2015. "Effect of polymer concentration on the polymer adsorption-induced permeability reduction in low permeability reservoirs," Energy, Elsevier, vol. 84(C), pages 666-671.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maaike Berger & Francesco Picchioni & Pablo Druetta, 2022. "Simulation of Polymer Chemical Enhanced Oil Recovery in Ghawar Field," Energies, MDPI, vol. 15(19), pages 1-31, October.
    2. Qiong Wang & Xiuwei Liu & Lixin Meng & Ruizhong Jiang & Haijun Fan, 2020. "The Numerical Simulation Study of the Oil–Water Seepage Behavior Dependent on the Polymer Concentration in Polymer Flooding," Energies, MDPI, vol. 13(19), pages 1-19, October.
    3. Yongpeng Sun & Yanchao Fang & Ang Chen & Qing You & Caili Dai & Rui Cheng & Yifei Liu, 2017. "Gelation Behavior Study of a Resorcinol–Hexamethyleneteramine Crosslinked Polymer Gel for Water Shut-Off Treatment in Low Temperature and High Salinity Reservoirs," Energies, MDPI, vol. 10(7), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Renfeng & Jiang, Ruizhong & Guo, Sheng & Chen, Han & Tang, Shasha & Duan, Rui, 2021. "Analytical study on the Critical Water Cut for Water Plugging: Water cut increasing control and production enhancement," Energy, Elsevier, vol. 214(C).
    2. Park, Hyemin & Han, Jinju & Sung, Wonmo, 2015. "Effect of polymer concentration on the polymer adsorption-induced permeability reduction in low permeability reservoirs," Energy, Elsevier, vol. 84(C), pages 666-671.
    3. Zhang, Yingnan & Li, Shujun & Dou, Xiangji & Wang, Sen & He, Yanfeng & Feng, Qihong, 2023. "Molecular insights into the natural gas regulating tight oil movability," Energy, Elsevier, vol. 270(C).
    4. Si Le Van & Bo Hyun Chon, 2016. "Artificial Neural Network Model for Alkali-Surfactant-Polymer Flooding in Viscous Oil Reservoirs: Generation and Application," Energies, MDPI, vol. 9(12), pages 1-20, December.
    5. Yi Zhang & Jiexiang Wang & Peng Jia & Xiao Liu & Xuxu Zhang & Chang Liu & Xiangwei Bai, 2020. "Viscosity Loss and Hydraulic Pressure Drop on Multilayer Separate Polymer Injection in Concentric Dual-Tubing," Energies, MDPI, vol. 13(7), pages 1-20, April.
    6. Abdelaziz L. Khlaifat & Duaa Dakhlallah & Faraz Sufyan, 2022. "A Critical Review of Alkaline Flooding: Mechanism, Hybrid Flooding Methods, Laboratory Work, Pilot Projects, and Field Applications," Energies, MDPI, vol. 15(10), pages 1-14, May.
    7. Ahmadi, Mohammadali & Chen, Zhangxin, 2022. "Molecular dynamics simulation of oil detachment from hydrophobic quartz surfaces during steam-surfactant Co-injection," Energy, Elsevier, vol. 254(PC).
    8. Azza Hashim Abbas & Obinna Markraphael Ajunwa & Birzhan Mazhit & Dmitriy A. Martyushev & Kamel Fahmi Bou-Hamdan & Ramzi A. Abd Alsaheb, 2022. "Evaluation of OKRA ( Abelmoschus esculentus ) Macromolecular Solution for Enhanced Oil Recovery in Kazakhstan Carbonate Reservoir," Energies, MDPI, vol. 15(18), pages 1-13, September.
    9. Sun, Hai & Li, Tianhao & Li, Zheng & Fan, Dongyan & Zhang, Lei & Yang, Yongfei & Zhang, Kai & Zhong, Junjie & Yao, Jun, 2023. "Shale oil redistribution-induced flow regime transition in nanopores," Energy, Elsevier, vol. 282(C).
    10. Huoxin Luan & Zhaohui Zhou & Chongjun Xu & Lei Bai & Xiaoguang Wang & Lu Han & Qun Zhang & Gen Li, 2022. "Study on the Synergistic Effects between Petroleum Sulfonate and a Nonionic–Anionic Surfactant for Enhanced Oil Recovery," Energies, MDPI, vol. 15(3), pages 1-12, February.
    11. Hong He & Jingyu Fu & Baofeng Hou & Fuqing Yuan & Lanlei Guo & Zongyang Li & Qing You, 2018. "Investigation of Injection Strategy of Branched-Preformed Particle Gel/Polymer/Surfactant for Enhanced Oil Recovery after Polymer Flooding in Heterogeneous Reservoirs," Energies, MDPI, vol. 11(8), pages 1-17, July.
    12. Qi, Yingxia & Meng, Xiangqi & Mu, Defu & Sun, Yangliu & Zhang, Hua, 2016. "Study on mechanism and factors affecting the gas leakage through clearance seal at nano-level by molecular dynamics method," Energy, Elsevier, vol. 102(C), pages 252-259.
    13. Dongsheng Chen & Wei Zheng & Taichao Wang & Fan Liu & Tong Cheng & Hengyuan Chen & Tingting Miao, 2022. "Influence of Temperature on the Adsorption and Diffusion of Heavy Oil in Quartz Nanopore: A Molecular Dynamics Study," Energies, MDPI, vol. 15(16), pages 1-17, August.
    14. Xiuyu Wang & Fuqiong Wang & Mohanad A. M. Taleb & Zhiyuan Wen & Xiulin Chen, 2022. "A Review of the Seepage Mechanisms of Heavy Oil Emulsions during Chemical Flooding," Energies, MDPI, vol. 15(22), pages 1-19, November.
    15. Chang, Yuanhao & Xiao, Senbo & Ma, Rui & Zhang, Zhiliang & He, Jianying, 2022. "Atomistic insight into oil displacement on rough surface by Janus nanoparticles," Energy, Elsevier, vol. 245(C).
    16. Liu, Yu-Long & Li, Yang & Si, Yin-Fang & Fu, Jian & Dong, Hao & Sun, Shan-Shan & Zhang, Fan & She, Yue-Hui & Zhang, Zhi-Quan, 2023. "Synthesis of nanosilver particles mediated by microbial surfactants and its enhancement of crude oil recovery," Energy, Elsevier, vol. 272(C).
    17. Si Le Van & Bo Hyun Chon, 2016. "Chemical Flooding in Heavy-Oil Reservoirs: From Technical Investigation to Optimization Using Response Surface Methodology," Energies, MDPI, vol. 9(9), pages 1-19, September.
    18. Aghil Moslemizadeh & Hossein Khayati & Mohammad Madani & Mehdi Ghasemi & Khalil Shahbazi & Sohrab Zendehboudi & Azza Hashim Abbas, 2021. "A Systematic Study to Assess Displacement Performance of a Naturally-Derived Surfactant in Flow Porous Systems," Energies, MDPI, vol. 14(24), pages 1-21, December.
    19. Bin Huang & Wei Zhang & Rui Xu & Zhenzhong Shi & Cheng Fu & Ying Wang & Kaoping Song, 2017. "A Study on the Matching Relationship of Polymer Molecular Weight and Reservoir Permeability in ASP Flooding for Duanxi Reservoirs in Daqing Oil Field," Energies, MDPI, vol. 10(7), pages 1-10, July.
    20. Baghernezhad, Danial & Siavashi, Majid & Nakhaee, Ali, 2019. "Optimal scenario design of steam-assisted gravity drainage to enhance oil recovery with temperature and rate control," Energy, Elsevier, vol. 166(C), pages 610-623.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:454-:d:94705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.