IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v138y2017icp1221-1246.html
   My bibliography  Save this article

Identification and thermodynamic analysis of reaction pathways of methylal and OME-n formation

Author

Listed:
  • Peters, Ralf

Abstract

Renewable energy from wind and solar sources is affected by fluctuations which do not correspond to the demand for electrical energy. Storage options are therefore required and also other possibilities of utilizing this power in a future energy system. Fuel synthesis using CO2 from industrial waste gases and hydrogen from electrolysis is an attractive approach. Methylal and higher oxymethylene ethers represent one fuel option due to the low-emission combustion of ethers with their characteristic CO bonds. However, conventional synthesis is an elaborate process because of the large number of intermediate steps. The direct synthesis of methylal and higher oxymethylene ethers would considerably simplify the technical implementation. Here we present a method that considers Gibbs energy in order to analyze the possibilities of direct synthesis from CO2-H2. High operating pressures and influence of the critical states of educt and products on the thermodynamic state parameters of enthalpy and entropy mean that the real gas properties can be modeled by an equation of state. Methylal can be formed with high conversion rates at pressures of 100 bar and temperatures below 373 K. Formation of dimethyl ether as a potential by-product must be suppressed by a suitable catalyst since it is thermodynamically favored.

Suggested Citation

  • Peters, Ralf, 2017. "Identification and thermodynamic analysis of reaction pathways of methylal and OME-n formation," Energy, Elsevier, vol. 138(C), pages 1221-1246.
  • Handle: RePEc:eee:energy:v:138:y:2017:i:c:p:1221-1246
    DOI: 10.1016/j.energy.2017.07.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217312252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Séverine Moret & Paul J. Dyson & Gábor Laurenczy, 2014. "Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    2. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    3. Ateka, Ainara & Pérez-Uriarte, Paula & Gamero, Mónica & Ereña, Javier & Aguayo, Andrés T. & Bilbao, Javier, 2017. "A comparative thermodynamic study on the CO2 conversion in the synthesis of methanol and of DME," Energy, Elsevier, vol. 120(C), pages 796-804.
    4. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    5. Liu, Haoye & Wang, Zhi & Wang, Jianxin & He, Xin & Zheng, Yanyan & Tang, Qiang & Wang, Jinfu, 2015. "Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/ diesel blends," Energy, Elsevier, vol. 88(C), pages 793-800.
    6. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Giakoumis, Evangelos G. & Dimaratos, Athanasios M., 2012. "Characteristics of performance and emissions in high-speed direct injection diesel engine fueled with diethyl ether/diesel fuel blends," Energy, Elsevier, vol. 43(1), pages 214-224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steffen Schemme & Sven Meschede & Maximilian Köller & Remzi Can Samsun & Ralf Peters & Detlef Stolten, 2020. "Property Data Estimation for Hemiformals, Methylene Glycols and Polyoxymethylene Dimethyl Ethers and Process Optimization in Formaldehyde Synthesis," Energies, MDPI, vol. 13(13), pages 1-29, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    2. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    3. Tilmann Rave, 2013. "Innovation Indicators on Global Climate Change – R&D Expenditure and Patents," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    4. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    5. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    6. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    7. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    8. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    9. Li, Yating & Fei, Yinxin & Zhang, Xiao-Bing & Qin, Ping, 2019. "Household appliance ownership and income inequality: Evidence from micro data in China," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    10. Xiaolun Wang & Xinlin Yao, 2020. "Fueling Pro-Environmental Behaviors with Gamification Design: Identifying Key Elements in Ant Forest with the Kano Model," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    11. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    12. He, Gang & Victor, David G., 2017. "Experiences and lessons from China’s success in providing electricity for all," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 335-338.
    13. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    14. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    15. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    16. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    17. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    18. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    19. Ondraczek, Janosch, 2014. "Are we there yet? Improving solar PV economics and power planning in developing countries: The case of Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 604-615.
    20. Clarke, Fiona & Dorneanu, Bogdan & Mechleri, Evgenia & Arellano-Garcia, Harvey, 2021. "Optimal design of heating and cooling pipeline networks for residential distributed energy resource systems," Energy, Elsevier, vol. 235(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:138:y:2017:i:c:p:1221-1246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.