IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v135y2017icp294-302.html
   My bibliography  Save this article

Enrichment of hydrogenotrophic methanogens by means of gas recycle and its application in biogas upgrading

Author

Listed:
  • Yun, Yeo-Myeong
  • Sung, Shihwu
  • Kang, Seoktae
  • Kim, Mi-Sun
  • Kim, Dong-Hoon

Abstract

Biomethanation by hydrogenotrophic methanogens has been proven as a potential process for managing renewable power intermittency and upgrading biogas. The present work aimed to enrich hydrogenotrophic methanogens under different mixing conditions (gas recycle vs. mechanical mixing) and temperatures (mesophilic vs. thermophilic conditions) for biogas upgrading. The synthetic gas (H2:CO2 = 4:1) was fed to the reactor bottom at a hydrogen injection rate (HIR) of 1.6 L H2 L−1 d−1. The gas recycle (100 L L−1 d−1) under thermophilic condition was found to be the most effective, reaching over 96% H2 conversion to CH4 within 15 d of operation. Archaea community analysis performed by 454 pyrosequencing showed that the sequence of Methanosaeta sp. decreased while obligate-hydrogenotrophic methanogens increased: Methanoculleus chikugoensis (19.5%) and Methanothermococcus thermolithotrophicus (28.1%) under mesophilic and thermophilic condition, respectively. To the thermophilic enriched culture, the biogas produced from an up-flow anaerobic sludge blanket reactor with additional hydrogen (four times of CO2) was fed at various HIRs for 200 d. As HIR increased, H2 consumption rate also increased with CO2 removal contained in the biogas. Up to an HIR increase to 19.2 L H2 L−1 d−1, the high calorific biomethane (96% of CH4) could be obtained at gas recycle rate of 200 L L−1 d−1.

Suggested Citation

  • Yun, Yeo-Myeong & Sung, Shihwu & Kang, Seoktae & Kim, Mi-Sun & Kim, Dong-Hoon, 2017. "Enrichment of hydrogenotrophic methanogens by means of gas recycle and its application in biogas upgrading," Energy, Elsevier, vol. 135(C), pages 294-302.
  • Handle: RePEc:eee:energy:v:135:y:2017:i:c:p:294-302
    DOI: 10.1016/j.energy.2017.06.133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217311313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahern, Eoin P. & Deane, Paul & Persson, Tobias & Ó Gallachóir, Brian & Murphy, Jerry D., 2015. "A perspective on the potential role of renewable gas in a smart energy island system," Renewable Energy, Elsevier, vol. 78(C), pages 648-656.
    2. Osorio, F. & Torres, J.C., 2009. "Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production," Renewable Energy, Elsevier, vol. 34(10), pages 2164-2171.
    3. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    4. Rachbauer, Lydia & Voitl, Gregor & Bochmann, Günther & Fuchs, Werner, 2016. "Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle-bed reactor," Applied Energy, Elsevier, vol. 180(C), pages 483-490.
    5. Zhang, Xiaojin & Bauer, Christian & Mutel, Christopher L. & Volkart, Kathrin, 2017. "Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications," Applied Energy, Elsevier, vol. 190(C), pages 326-338.
    6. Pierie, F. & Bekkering, J. & Benders, R.M.J. & van Gemert, W.J.Th. & Moll, H.C., 2016. "A new approach for measuring the environmental sustainability of renewable energy production systems: Focused on the modelling of green gas production pathways," Applied Energy, Elsevier, vol. 162(C), pages 131-138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Ruggero Bellini & Ilaria Bassani & Arianna Vizzarro & Annalisa Abdel Azim & Nicolò Santi Vasile & Candido Fabrizio Pirri & Francesca Verga & Barbara Menin, 2022. "Biological Aspects, Advancements and Techno-Economical Evaluation of Biological Methanation for the Recycling and Valorization of CO 2," Energies, MDPI, vol. 15(11), pages 1-34, June.
    3. Ma, Lei & Zhou, Lei & Mbadinga, Serge Maurice & Gu, Ji-Dong & Mu, Bo-Zhong, 2018. "Accelerated CO2 reduction to methane for energy by zero valent iron in oil reservoir production waters," Energy, Elsevier, vol. 147(C), pages 663-671.
    4. Lee, Eun Seo & Park, Seon Yeong & Kim, Chang Gyun, 2023. "Feasibility test anaerobically enhancing methane yield under the injection of hydrogen and carbon dioxide," Renewable Energy, Elsevier, vol. 212(C), pages 761-768.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    2. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
    3. Savvas, Savvas & Donnelly, Joanne & Patterson, Tim & Chong, Zyh S. & Esteves, Sandra R., 2017. "Biological methanation of CO2 in a novel biofilm plug-flow reactor: A high rate and low parasitic energy process," Applied Energy, Elsevier, vol. 202(C), pages 238-247.
    4. McDonagh, Shane & Deane, Paul & Rajendran, Karthik & Murphy, Jerry D., 2019. "Are electrofuels a sustainable transport fuel? Analysis of the effect of controls on carbon, curtailment, and cost of hydrogen," Applied Energy, Elsevier, vol. 247(C), pages 716-730.
    5. Burkhardt, Marko & Jordan, Isabel & Heinrich, Sabrina & Behrens, Johannes & Ziesche, André & Busch, Günter, 2019. "Long term and demand-oriented biocatalytic synthesis of highly concentrated methane in a trickle bed reactor," Applied Energy, Elsevier, vol. 240(C), pages 818-826.
    6. Inkeri, Eero & Tynjälä, Tero & Laari, Arto & Hyppänen, Timo, 2018. "Dynamic one-dimensional model for biological methanation in a stirred tank reactor," Applied Energy, Elsevier, vol. 209(C), pages 95-107.
    7. Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.
    8. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    9. Kouchachvili, Lia & Entchev, Evgueniy, 2018. "Power to gas and H2/NG blend in SMART energy networks concept," Renewable Energy, Elsevier, vol. 125(C), pages 456-464.
    10. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Witte, Julia & Calbry-Muzyka, Adelaide & Wieseler, Tanja & Hottinger, Peter & Biollaz, Serge M.A. & Schildhauer, Tilman J., 2019. "Demonstrating direct methanation of real biogas in a fluidised bed reactor," Applied Energy, Elsevier, vol. 240(C), pages 359-371.
    12. McDonagh, Shane & Ahmed, Shorif & Desmond, Cian & Murphy, Jerry D, 2020. "Hydrogen from offshore wind: Investor perspective on the profitability of a hybrid system including for curtailment," Applied Energy, Elsevier, vol. 265(C).
    13. Andreas Lemmer & Timo Ullrich, 2018. "Effect of Different Operating Temperatures on the Biological Hydrogen Methanation in Trickle Bed Reactors," Energies, MDPI, vol. 11(6), pages 1-11, May.
    14. Larscheid, Patrick & Lück, Lara & Moser, Albert, 2018. "Potential of new business models for grid integrated water electrolysis," Renewable Energy, Elsevier, vol. 125(C), pages 599-608.
    15. Kirchbacher, F. & Miltner, M. & Wukovits, W. & Harasek, M., 2019. "Economic assessment of membrane-based power-to-gas processes for the European biogas market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 338-352.
    16. Ju, Liwei & Zhao, Rui & Tan, Qinliang & Lu, Yan & Tan, Qingkun & Wang, Wei, 2019. "A multi-objective robust scheduling model and solution algorithm for a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response," Applied Energy, Elsevier, vol. 250(C), pages 1336-1355.
    17. Shan, Rui & Reagan, Jeremiah & Castellanos, Sergio & Kurtz, Sarah & Kittner, Noah, 2022. "Evaluating emerging long-duration energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Meylan, Frédéric D. & Moreau, Vincent & Erkman, Suren, 2016. "Material constraints related to storage of future European renewable electricity surpluses with CO2 methanation," Energy Policy, Elsevier, vol. 94(C), pages 366-376.
    19. Gábor Pörzse & Zoltán Csedő & Máté Zavarkó, 2021. "Disruption Potential Assessment of the Power-to-Methane Technology," Energies, MDPI, vol. 14(8), pages 1-21, April.
    20. Eveloy, Valerie & Gebreegziabher, Tesfaldet, 2019. "Excess electricity and power-to-gas storage potential in the future renewable-based power generation sector in the United Arab Emirates," Energy, Elsevier, vol. 166(C), pages 426-450.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:135:y:2017:i:c:p:294-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.