IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v123y2017icp198-217.html
   My bibliography  Save this article

The choice between turbine expanders and variable speed pumps as replacement for throttling devices in non-thermal process applications

Author

Listed:
  • Singh, Punit

Abstract

The choice of energy recovery technology in process industries is still a matter of debate despite the two state-of-art methods, namely turbine expanders and variable speed pumps, available in the market.

Suggested Citation

  • Singh, Punit, 2017. "The choice between turbine expanders and variable speed pumps as replacement for throttling devices in non-thermal process applications," Energy, Elsevier, vol. 123(C), pages 198-217.
  • Handle: RePEc:eee:energy:v:123:y:2017:i:c:p:198-217
    DOI: 10.1016/j.energy.2017.01.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217301317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Aibin & Zhao, Jun & An, Qingsong & Zhao, Yulong & Li, Hailong & Huang, Yrjö Jun, 2013. "Hydraulic performance of a new district heating systems with distributed variable speed pumps," Applied Energy, Elsevier, vol. 112(C), pages 876-885.
    2. Marquand, C.J. & Tassou, S.A. & Wang, Y.T. & Wilson, D.R., 1984. "An economic comparison of a fixed speed, a two speed, and a variable speed vapour compression heat pump," Applied Energy, Elsevier, vol. 16(1), pages 59-66.
    3. Bansal, Pradeep & Marshall, Nick, 2010. "Feasibility of hydraulic power recovery from waste energy in bio-gas scrubbing processes," Applied Energy, Elsevier, vol. 87(3), pages 1048-1053, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeyad Al-Suhaibani & Syed Noman Danish & Ziyad Saleh Al-Khalaf & Basharat Salim, 2023. "Improved Prediction Model and Utilization of Pump as Turbine for Excess Power Saving from Large Pumping System in Saudi Arabia," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    2. Frate, Guido Francesco & Ferrari, Lorenzo & Lensi, Roberto & Desideri, Umberto, 2019. "Steam expander as a throttling valve replacement in industrial plants: A techno-economic feasibility analysis," Applied Energy, Elsevier, vol. 238(C), pages 11-21.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muniak, Damian Piotr, 2014. "A new methodology to determine the pre-setting of the control valve in a heating installation. A general model," Applied Energy, Elsevier, vol. 135(C), pages 35-42.
    2. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration," Applied Energy, Elsevier, vol. 230(C), pages 1126-1139.
    3. Zhang, Lipeng & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Li, Hongwei & Li, Xiaopeng & Svendsen, Svend, 2016. "Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level," Energy, Elsevier, vol. 107(C), pages 431-442.
    4. Ioan Sarbu & Matei Mirza & Daniel Muntean, 2022. "Integration of Renewable Energy Sources into Low-Temperature District Heating Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-28, September.
    5. ValinÄ ius, Mindaugas & ŽutautaitÄ—, Inga & Dundulis, Gintautas & RimkeviÄ ius, Sigitas & Janulionis, Remigijus & Bakas, Rimantas, 2015. "Integrated assessment of failure probability of the district heating network," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 314-322.
    6. Maria Pinamonti & Alessandro Prada & Paolo Baggio, 2020. "Rule-Based Control Strategy to Increase Photovoltaic Self-Consumption of a Modulating Heat Pump Using Water Storages and Building Mass Activation," Energies, MDPI, vol. 13(23), pages 1-21, November.
    7. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    8. Sommer, Tobias & Mennel, Stefan & Sulzer, Matthias, 2019. "Lowering the pressure in district heating and cooling networks by alternating the connection of the expansion vessel," Energy, Elsevier, vol. 172(C), pages 991-996.
    9. Licklederer, Thomas & Hamacher, Thomas & Kramer, Michael & Perić, Vedran S., 2021. "Thermohydraulic model of Smart Thermal Grids with bidirectional power flow between prosumers," Energy, Elsevier, vol. 230(C).
    10. Wang, Hai & Wang, Haiying & Haijian, Zhou & Zhu, Tong, 2017. "Optimization modeling for smart operation of multi-source district heating with distributed variable-speed pumps," Energy, Elsevier, vol. 138(C), pages 1247-1262.
    11. Wang, Yaran & Shi, Kaiyu & Zheng, Xuejing & You, Shijun & Zhang, Huan & Zhu, Chengzhi & Li, Liang & Wei, Shen & Ding, Chao & Wang, Na, 2020. "Thermo-hydraulic coupled analysis of meshed district heating networks based on improved breadth first search method," Energy, Elsevier, vol. 205(C).
    12. Semmari, Hamza & Mauran, Sylvain & Stitou, Driss, 2017. "Experimental validation of an analytical model of hydraulic motor operating under variable electrical loads and pressure heads," Applied Energy, Elsevier, vol. 206(C), pages 1309-1320.
    13. Zhong, Wei & Feng, Hongcui & Wang, Xuguang & Wu, Dingfei & Xue, Minghua & Wang, Jian, 2015. "Online hydraulic calculation and operation optimization of industrial steam heating networks considering heat dissipation in pipes," Energy, Elsevier, vol. 87(C), pages 566-577.
    14. Ashfaq, Asad & Ianakiev, Anton, 2018. "Investigation of hydraulic imbalance for converting existing boiler based buildings to low temperature district heating," Energy, Elsevier, vol. 160(C), pages 200-212.
    15. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    16. Frate, Guido Francesco & Ferrari, Lorenzo & Lensi, Roberto & Desideri, Umberto, 2019. "Steam expander as a throttling valve replacement in industrial plants: A techno-economic feasibility analysis," Applied Energy, Elsevier, vol. 238(C), pages 11-21.
    17. Liu, Yanfeng & Tang, Huanlong & Chen, Yaowen & Wang, Dengjia & Song, Cong, 2022. "Optimization of layout and diameter for distributed solar heating network with multi-source and multi-sink," Energy, Elsevier, vol. 258(C).
    18. Duquette, Jean & Rowe, Andrew & Wild, Peter, 2016. "Thermal performance of a steady state physical pipe model for simulating district heating grids with variable flow," Applied Energy, Elsevier, vol. 178(C), pages 383-393.
    19. Muhammad Abid & Neil Hewitt & Ming-Jun Huang & Christopher Wilson & Donal Cotter, 2021. "Domestic Retrofit Assessment of the Heat Pump System Considering the Impact of Heat Supply Temperature and Operating Mode of Control—A Case Study," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    20. Hu Shi & Zhaoying Liu & Xuesong Mei, 2019. "Overview of Human Walking Induced Energy Harvesting Technologies and Its Possibility for Walking Robotics," Energies, MDPI, vol. 13(1), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:123:y:2017:i:c:p:198-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.