IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v118y2017icp937-949.html
   My bibliography  Save this article

The life cycle greenhouse gas implications of a UK gas supply transformation on a future low carbon electricity sector

Author

Listed:
  • P. Hammond, Geoffrey
  • O' Grady, Áine

Abstract

Natural gas used for power generation will be increasingly sourced from more geographically diverse sites, and unconventional sources such as shale and biomethane, as natural gas reserves diminish. A consequential life cycle approach was employed to examine the implications of an evolving gas supply on the greenhouse gas (GHG) performance of a future United Kingdom (UK) electricity system. Three gas supply mixes were developed based on supply trends, from present day to the year 2050. The contribution of upstream gas emissions - such as extraction, processing/refining, - is not fully reported or covered by UK government legislation. However, upstream gas emissions were seen to be very influential on the future electricity systems analysed; with upstream gas emissions per MJ rising between 2.7 and 3.4 times those of the current supply. Increased biomethane in the gas supply led to a substantial reduction in direct fossil emissions, which was found to be critical in offsetting rising upstream emissions. Accordingly, the modelled high shale gas scenario, with the lowest biomethane adoption; resulted in the highest GHG emissions on a life cycle basis. The long-term dynamics of upstream processes are explored in this work to help guide future decarbonisation policies.

Suggested Citation

  • P. Hammond, Geoffrey & O' Grady, Áine, 2017. "The life cycle greenhouse gas implications of a UK gas supply transformation on a future low carbon electricity sector," Energy, Elsevier, vol. 118(C), pages 937-949.
  • Handle: RePEc:eee:energy:v:118:y:2017:i:c:p:937-949
    DOI: 10.1016/j.energy.2016.10.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216315699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.10.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hammond, Geoffrey P. & Howard, Hayley R. & Jones, Craig I., 2013. "The energy and environmental implications of UK more electric transition pathways: A whole systems perspective," Energy Policy, Elsevier, vol. 52(C), pages 103-116.
    2. Soimakallio, Sampo & Kiviluoma, Juha & Saikku, Laura, 2011. "The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment) – A methodological review," Energy, Elsevier, vol. 36(12), pages 6705-6713.
    3. Söderbergh, Bengt & Jakobsson, Kristofer & Aleklett, Kjell, 2010. "European energy security: An analysis of future Russian natural gas production and exports," Energy Policy, Elsevier, vol. 38(12), pages 7827-7843, December.
    4. Welfle, Andrew & Gilbert, Paul & Thornley, Patricia, 2014. "Securing a bioenergy future without imports," Energy Policy, Elsevier, vol. 68(C), pages 1-14.
    5. Foxon, Timothy J., 2013. "Transition pathways for a UK low carbon electricity future," Energy Policy, Elsevier, vol. 52(C), pages 10-24.
    6. Hammond, G.P. & Akwe, S.S. Ondo & Williams, S., 2011. "Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage," Energy, Elsevier, vol. 36(2), pages 975-984.
    7. Allen, S.R. & Hammond, G.P. & McManus, M.C., 2008. "Prospects for and barriers to domestic micro-generation: A United Kingdom perspective," Applied Energy, Elsevier, vol. 85(6), pages 528-544, June.
    8. Söderbergh, Bengt & Jakobsson, Kristofer & Aleklett, Kjell, 2009. "European energy security: The future of Norwegian natural gas production," Energy Policy, Elsevier, vol. 37(12), pages 5037-5055, December.
    9. Adams, P.W.R. & Mezzullo, W.G. & McManus, M.C., 2015. "Biomass sustainability criteria: Greenhouse gas accounting issues for biogas and biomethane facilities," Energy Policy, Elsevier, vol. 87(C), pages 95-109.
    10. Odeh, Naser A. & Cockerill, Timothy T., 2008. "Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage," Energy Policy, Elsevier, vol. 36(1), pages 367-380, January.
    11. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hobley, Alexander, 2019. "Will gas be gone in the United Kingdom (UK) by 2050? An impact assessment of urban heat decarbonisation and low emission vehicle uptake on future UK energy system scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 695-705.
    2. Ramirez, Angel D. & Rivela, Beatriz & Boero, Andrea & Melendres, Ana M., 2019. "Lights and shadows of the environmental impacts of fossil-based electricity generation technologies: A contribution based on the Ecuadorian experience," Energy Policy, Elsevier, vol. 125(C), pages 467-477.
    3. Griffin, Paul W. & Hammond, Geoffrey P. & Norman, Jonathan B., 2018. "Industrial energy use and carbon emissions reduction in the chemicals sector: A UK perspective," Applied Energy, Elsevier, vol. 227(C), pages 587-602.
    4. Andrea J. Boero & Kevin Kardux & Marina Kovaleva & Daniel A. Salas & Jacco Mooijer & Syed Mashruk & Michael Townsend & Kevin Rouwenhorst & Agustin Valera-Medina & Angel D. Ramirez, 2021. "Environmental Life Cycle Assessment of Ammonia-Based Electricity," Energies, MDPI, vol. 14(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hammond, Geoff & O'Grady, Áine, 2013. "The Implications of Upstream Emissions from the Power Sector," Realising Transition Pathways 44209, University of Bath, Realising Transition Pathways.
    2. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    3. Kleijn, René & van der Voet, Ester & Kramer, Gert Jan & van Oers, Lauran & van der Giesen, Coen, 2011. "Metal requirements of low-carbon power generation," Energy, Elsevier, vol. 36(9), pages 5640-5648.
    4. Lucas, Alexandre & Neto, Rui Costa & Silva, Carla Alexandra, 2013. "Energy supply infrastructure LCA model for electric and hydrogen transportation systems," Energy, Elsevier, vol. 56(C), pages 70-80.
    5. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    6. Barton, John & Davies, Lloyd & Dooley, Ben & Foxon, Timothy J. & Galloway, Stuart & Hammond, Geoffrey P. & O’Grady, Áine & Robertson, Elizabeth & Thomson, Murray, 2018. "Transition pathways for a UK low-carbon electricity system: Comparing scenarios and technology implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2779-2790.
    7. Christian Growitsch & Harald Hecking & Timo Panke, 2014. "Supply Disruptions and Regional Price Effects in a Spatial Oligopoly—An Application to the Global Gas Market," Review of International Economics, Wiley Blackwell, vol. 22(5), pages 944-975, November.
    8. Mansouri, Noura Y. & Crookes, Roy J. & Korakianitis, Theodosios, 2013. "A projection of energy consumption and carbon dioxide emissions in the electricity sector for Saudi Arabia: The case for carbon capture and storage and solar photovoltaics," Energy Policy, Elsevier, vol. 63(C), pages 681-695.
    9. Johanna Leväsluoto & Johanna Kohl & Anton Sigfrids & Jussi Pihlajamäki & Janne Martikainen, 2021. "Digitalization as an Engine for Change? Building a Vision Pathway towards a Sustainable Health Care System by Using the MLP and Health Economic Decision Modelling," Sustainability, MDPI, vol. 13(23), pages 1-24, November.
    10. Varun, & Prakash, Ravi & Bhat, I.K., 2012. "Life cycle greenhouse gas emissions estimation for small hydropower schemes in India," Energy, Elsevier, vol. 44(1), pages 498-508.
    11. Alderson, Helen & Cranston, Gemma R. & Hammond, Geoffrey P., 2012. "Carbon and environmental footprinting of low carbon UK electricity futures to 2050," Energy, Elsevier, vol. 48(1), pages 96-107.
    12. Manfred Lenzen & Roberto Schaeffer, 2012. "Historical and potential future contributions of power technologies to global warming," Climatic Change, Springer, vol. 112(3), pages 601-632, June.
    13. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    14. Graeme J. Collie & Mahmoud Nazeri & Amir Jahanbakhsh & Chih‐Wei Lin & M. Mercedes Maroto‐Valer, 2017. "Review of flowmeters for carbon dioxide transport in CCS applications," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 10-28, February.
    15. Hammond, Geoffrey P. & Howard, Hayley R. & Jones, Craig I., 2013. "The energy and environmental implications of UK more electric transition pathways: A whole systems perspective," Energy Policy, Elsevier, vol. 52(C), pages 103-116.
    16. Yang, Weijia & Huang, Yuping & Zhang, Tianren & Zhao, Daiqing, 2023. "Mechanism and analytical methods for carbon emission-exergy flow distribution in heat-electricity integrated energy system," Applied Energy, Elsevier, vol. 352(C).
    17. Hammond, Geoffrey P. & Hazeldine, Tom, 2015. "Indicative energy technology assessment of advanced rechargeable batteries," Applied Energy, Elsevier, vol. 138(C), pages 559-571.
    18. Berk, Istemi & Schulte, Simon, 2017. "Turkey's Role in Natural Gas - Becoming a Transit Country?," EWI Working Papers 2017-1, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 27 Jan 2017.
    19. Trutnevyte, Evelina & Strachan, Neil & Dodds, Paul E. & Pudjianto, Danny & Strbac, Goran, 2015. "Synergies and trade-offs between governance and costs in electricity system transition," Energy Policy, Elsevier, vol. 85(C), pages 170-181.
    20. Maïzi, Nadia & Assoumou, Edi, 2014. "Future prospects for nuclear power in France," Applied Energy, Elsevier, vol. 136(C), pages 849-859.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:118:y:2017:i:c:p:937-949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.