IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v118y2017icp489-501.html
   My bibliography  Save this article

Sequential Monte Carlo simulation for robust optimal design of cooling water system with quantified uncertainty and reliability

Author

Listed:
  • Cheng, Qi
  • Wang, Shengwei
  • Yan, Chengchu

Abstract

Conventional design of cooling water systems mainly focused on the individual components of cooling water system, not the system as a whole. In this paper, a robust optimal design based on sequential Monte Carlo simulation is proposed to optimize the design of cooling water system. Monte Carlo simulation is used to obtain the cooling load distribution of required accuracy, power consumption and unmet cooling load. Convergence assessment is conducted to terminate the sampling process of Monte Carlo simulation. Under different penalty ratios and repair rates, this proposed design minimizes the annual total cost of cooling water system. A case study of a building in Hong Kong is conducted to demonstrate the design process and test the robust optimal design method. The results show that the minimum total cost could be achieved under various possible cooling load conditions considering the uncertainties of design inputs and reliability of system components.

Suggested Citation

  • Cheng, Qi & Wang, Shengwei & Yan, Chengchu, 2017. "Sequential Monte Carlo simulation for robust optimal design of cooling water system with quantified uncertainty and reliability," Energy, Elsevier, vol. 118(C), pages 489-501.
  • Handle: RePEc:eee:energy:v:118:y:2017:i:c:p:489-501
    DOI: 10.1016/j.energy.2016.10.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216314852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.10.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ashouri, Araz & Petrini, Flavio & Bornatico, Raffaele & Benz, Michael J., 2014. "Sensitivity analysis for robust design of building energy systems," Energy, Elsevier, vol. 76(C), pages 264-275.
    2. Picón-Núnez, Martín & Polley, Graham T. & Canizalez-Dávalos, Lázaro & Medina-Flores, José Martín, 2011. "Short cut performance method for the design of flexible cooling systems," Energy, Elsevier, vol. 36(8), pages 4646-4653.
    3. Hong, Tianzhen & Yang, Le & Hill, David & Feng, Wei, 2014. "Data and analytics to inform energy retrofit of high performance buildings," Applied Energy, Elsevier, vol. 126(C), pages 90-106.
    4. Gang, Wenjie & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2015. "Robust optimal design of building cooling systems considering cooling load uncertainty and equipment reliability," Applied Energy, Elsevier, vol. 159(C), pages 265-275.
    5. Gang, Wenjie & Augenbroe, Godfried & Wang, Shengwei & Fan, Cheng & Xiao, Fu, 2016. "An uncertainty-based design optimization method for district cooling systems," Energy, Elsevier, vol. 102(C), pages 516-527.
    6. Yan, Chengchu & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2015. "A multi-level energy performance diagnosis method for energy information poor buildings," Energy, Elsevier, vol. 83(C), pages 189-203.
    7. Yıldız, Yusuf & Arsan, Zeynep Durmuş, 2011. "Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates," Energy, Elsevier, vol. 36(7), pages 4287-4296.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Zhiyang & Jin, Xinqiao & Lyu, Yuan & Xue, Qi & Du, Zhimin, 2023. "A robust capacity configuration selection method of multiple-chiller system concerned with the uncertainty of annual hourly load profile," Energy, Elsevier, vol. 282(C).
    2. Ma, Jiaze & Wang, Yufei & Feng, Xiao, 2017. "Energy recovery in cooling water system by hydro turbines," Energy, Elsevier, vol. 139(C), pages 329-340.
    3. Yamile Díaz Torres & Paride Gullo & Hernán Hernández Herrera & Migdalia Torres del Toro & Mario A. Álvarez Guerra & Jorge Iván Silva Ortega & Arne Speerforck, 2022. "Statistical Analysis of Design Variables in a Chiller Plant and Their Influence on Energy Consumption and Life Cycle Cost," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    4. Postnikov, Ivan & Stennikov, Valery & Mednikova, Ekaterina & Penkovskii, Andrey, 2018. "Methodology for optimization of component reliability of heat supply systems," Applied Energy, Elsevier, vol. 227(C), pages 365-374.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Jianing & Li, Hangxin & Wang, Shengwei, 2022. "A quantitative reliability assessment and risk quantification method for microgrids considering supply and demand uncertainties," Applied Energy, Elsevier, vol. 328(C).
    2. Niu, Jide & Tian, Zhe & Yue, Lu, 2020. "Robust optimal design of building cooling sources considering the uncertainty and cross-correlation of demand and source," Applied Energy, Elsevier, vol. 265(C).
    3. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    4. Cheng, Qi & Wang, Shengwei & Yan, Chengchu & Xiao, Fu, 2017. "Probabilistic approach for uncertainty-based optimal design of chiller plants in buildings," Applied Energy, Elsevier, vol. 185(P2), pages 1613-1624.
    5. Li, Hangxin & Wang, Shengwei, 2017. "Probabilistic optimal design concerning uncertainties and on-site adaptive commissioning of air-conditioning water pump systems in buildings," Applied Energy, Elsevier, vol. 202(C), pages 53-65.
    6. Li, Hangxin & Wang, Shengwei & Tang, Rui, 2019. "Robust optimal design of zero/low energy buildings considering uncertainties and the impacts of objective functions," Applied Energy, Elsevier, vol. 254(C).
    7. Niu, Jide & Tian, Zhe & Lu, Yakai & Zhao, Hongfang & Lan, Bo, 2019. "A robust optimization model for designing the building cooling source under cooling load uncertainty," Applied Energy, Elsevier, vol. 241(C), pages 390-403.
    8. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    9. Yamile Díaz Torres & Paride Gullo & Hernán Hernández Herrera & Migdalia Torres del Toro & Mario A. Álvarez Guerra & Jorge Iván Silva Ortega & Arne Speerforck, 2022. "Statistical Analysis of Design Variables in a Chiller Plant and Their Influence on Energy Consumption and Life Cycle Cost," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    10. Xavier Serrano-Guerrero & Guillermo Escrivá-Escrivá & Santiago Luna-Romero & Jean-Michel Clairand, 2020. "A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles," Energies, MDPI, vol. 13(5), pages 1-23, February.
    11. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    12. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    13. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    14. Zhijia Huang & Xiaofeng Chen & Kaiwen Wang & Binbin Zhou, 2022. "Air Conditioning Load Forecasting and Optimal Operation of Water Systems," Sustainability, MDPI, vol. 14(9), pages 1-12, April.
    15. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    16. Lu, Zhijian & Shao, Shuai, 2016. "Impacts of government subsidies on pricing and performance level choice in Energy Performance Contracting: A two-step optimal decision model," Applied Energy, Elsevier, vol. 184(C), pages 1176-1183.
    17. Jia, Shuning & Sheng, Kai & Huang, Dehai & Hu, Kai & Xu, Yizhe & Yan, Chengchu, 2023. "Design optimization of energy systems for zero energy buildings based on grid-friendly interaction with smart grid," Energy, Elsevier, vol. 284(C).
    18. Yokoyama, Ryohei & Tokunaga, Akira & Wakui, Tetsuya, 2018. "Robust optimal design of energy supply systems under uncertain energy demands based on a mixed-integer linear model," Energy, Elsevier, vol. 153(C), pages 159-169.
    19. Jeon, Jun-Seo & Lee, Seung-Rae & Pasquinelli, Lisa & Fabricius, Ida Lykke, 2015. "Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well," Energy, Elsevier, vol. 90(P2), pages 1349-1359.
    20. Dario Cottafava & Giulia Sonetti & Paolo Gambino & Andrea Tartaglino, 2018. "Explorative Multidimensional Analysis for Energy Efficiency: DataViz versus Clustering Algorithms," Energies, MDPI, vol. 11(5), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:118:y:2017:i:c:p:489-501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.