IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p4867-d796665.html
   My bibliography  Save this article

Air Conditioning Load Forecasting and Optimal Operation of Water Systems

Author

Listed:
  • Zhijia Huang

    (School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243032, China)

  • Xiaofeng Chen

    (School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243032, China)

  • Kaiwen Wang

    (Hangzhou RUNPAQ Environment & Engineering Co., Ltd., Hangzhou 310051, China)

  • Binbin Zhou

    (School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243032, China)

Abstract

In order to conduct a data-driven load forecasting modeling and its application in optimal control of air-conditioning system, this study used a hotel’s central air conditioning system as the research object. Based on the data of the hotel energy management system, the load-forecasting model of the central air conditioning system based on support vector regression (SVR) was established by MATLAB. Based on the working principle of a chiller, chilled water pump, cooling water pump, and cooling tower, the energy consumption models were established, respectively. Finally, based on the load-forecasting results and the equipment energy consumption model, the energy consumption optimization objective function of the hotel water system was established, the objective function was solved to optimize the operating parameters of the water system at different load rates, the operation control strategy for each piece of equipment was obtained, and the energy-saving analysis was carried out. The results show that in the range of a load rate of 25~90%, the optimization strategy has an energy-saving effect, and the system’s energy-saving rate is the highest when the load rate is 25.4%. The average energy-saving rate of the system is 12.4%.

Suggested Citation

  • Zhijia Huang & Xiaofeng Chen & Kaiwen Wang & Binbin Zhou, 2022. "Air Conditioning Load Forecasting and Optimal Operation of Water Systems," Sustainability, MDPI, vol. 14(9), pages 1-12, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:4867-:d:796665
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/4867/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/4867/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan, Chengchu & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2015. "A multi-level energy performance diagnosis method for energy information poor buildings," Energy, Elsevier, vol. 83(C), pages 189-203.
    2. Deb, C. & Schlueter, A., 2021. "Review of data-driven energy modelling techniques for building retrofit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu-Wing Yu & Wai-Tung Ho, 2023. "Time Series Forecast of Cooling Demand for Sustainable Chiller System in an Office Building in a Subtropical Climate," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    2. Rodrigo Schons Arenhart & Adriano Mendonça Souza & Roselaine Ruviaro Zanini, 2022. "Energy Use and Its Key Factors in Hotel Chains," Sustainability, MDPI, vol. 14(14), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    2. Lahoucine Ouhsaine & Mohammed El Ganaoui & Abdelaziz Mimet & Jean-Michel Nunzi, 2021. "A Substitutive Coefficients Network for the Modelling of Thermal Systems: A Mono-Zone Building Case Study," Energies, MDPI, vol. 14(9), pages 1-19, April.
    3. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Yoon, Y. & Jung, S. & Im, P. & Salonvaara, M. & Bhandari, M. & Kunwar, N., 2023. "Empirical validation of building energy simulation model input parameter for multizone commercial building during the cooling season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
    6. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
    7. Harish, V.S.K.V. & Kumar, Arun, 2016. "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1272-1292.
    8. Liu, Xuefeng & Huang, Bin & Zheng, Yulan, 2023. "Control strategy for dynamic operation of multiple chillers under random load constraints," Energy, Elsevier, vol. 270(C).
    9. Muhammad Ali & Krishneel Prakash & Carlos Macana & Ali Kashif Bashir & Alireza Jolfaei & Awais Bokhari & Jiří Jaromír Klemeš & Hemanshu Pota, 2022. "Modeling Residential Electricity Consumption from Public Demographic Data for Sustainable Cities," Energies, MDPI, vol. 15(6), pages 1-16, March.
    10. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    11. Abdurahman Alrobaie & Moncef Krarti, 2022. "A Review of Data-Driven Approaches for Measurement and Verification Analysis of Building Energy Retrofits," Energies, MDPI, vol. 15(21), pages 1-30, October.
    12. Salah Vaisi & Saleh Mohammadi & Benedetto Nastasi & Kavan Javanroodi, 2020. "A New Generation of Thermal Energy Benchmarks for University Buildings," Energies, MDPI, vol. 13(24), pages 1-18, December.
    13. Yang, Xiu'e & Liu, Shuli & Zou, Yuliang & Ji, Wenjie & Zhang, Qunli & Ahmed, Abdullahi & Han, Xiaojing & Shen, Yongliang & Zhang, Shaoliang, 2022. "Energy-saving potential prediction models for large-scale building: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Wang, Huilong & Xu, Peng & Lu, Xing & Yuan, Dengkuo, 2016. "Methodology of comprehensive building energy performance diagnosis for large commercial buildings at multiple levels," Applied Energy, Elsevier, vol. 169(C), pages 14-27.
    15. Yan, Chengchu & Gang, Wenjie & Niu, Xiaofeng & Peng, Xujian & Wang, Shengwei, 2017. "Quantitative evaluation of the impact of building load characteristics on energy performance of district cooling systems," Applied Energy, Elsevier, vol. 205(C), pages 635-643.
    16. Fan, Cheng & Lei, Yutian & Sun, Yongjun & Piscitelli, Marco Savino & Chiosa, Roberto & Capozzoli, Alfonso, 2022. "Data-centric or algorithm-centric: Exploiting the performance of transfer learning for improving building energy predictions in data-scarce context," Energy, Elsevier, vol. 240(C).
    17. Pedro Fernández de Córdoba & Frank Florez Montes & Miguel E. Iglesias Martínez & Jose Guerra Carmenate & Romeo Selvas & John Taborda, 2023. "Design of an Algorithm for Modeling Multiple Thermal Zones Using a Lumped-Parameter Model," Energies, MDPI, vol. 16(5), pages 1-22, February.
    18. Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).
    19. Hu, Shuaijun & Kong, Gangqiang & Zhang, Changsen & Fu, Jinghui & Li, Shiyao & Yang, Qing, 2024. "Data-driven models for the steady thermal performance prediction of energy piles optimized by metaheuristic algorithms," Energy, Elsevier, vol. 313(C).
    20. Amir Mortazavigazar & Nourehan Wahba & Paul Newsham & Maharti Triharta & Pufan Zheng & Tracy Chen & Behzad Rismanchi, 2021. "Application of Artificial Neural Networks for Virtual Energy Assessment," Energies, MDPI, vol. 14(24), pages 1-18, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:4867-:d:796665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.