IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v116y2016ip3p1479-1483.html
   My bibliography  Save this article

Detonations in hydrogen-methane-air mixtures in semi confined flat channels

Author

Listed:
  • Rudy, Wojciech
  • Zbikowski, Mateusz
  • Teodorczyk, Andrzej

Abstract

The aim of this work was to determine the influence of methane addition on the critical layer thickness h* and its relation to detonation cell size (λ) for stable detonation propagating in semi-confined, non-obstructed channel filled with uniform, stoichiometric hydrogen-methane-air mixtures. Three types of gaseous mixture composition were used: 0%, 5% and 10% of methane volume fraction in the mixture with hydrogen. The critical height h*, detonation cell size λ and critical relation h*/λ were defined for each investigated mixture showing that detonation in stoichiometric hydrogen-air mixture may propagate in semi-open channel only when the channel height is very close to, or exceeds, 3 cell sizes. Methane addition to the investigated combustible mixture increases the critical h*, however h*/λ ratio increases as well to 3.1 and 3.4 for 5% and 10% methane fraction, respectively.

Suggested Citation

  • Rudy, Wojciech & Zbikowski, Mateusz & Teodorczyk, Andrzej, 2016. "Detonations in hydrogen-methane-air mixtures in semi confined flat channels," Energy, Elsevier, vol. 116(P3), pages 1479-1483.
  • Handle: RePEc:eee:energy:v:116:y:2016:i:p3:p:1479-1483
    DOI: 10.1016/j.energy.2016.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216307733
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Navarro, Emilio & Leo, Teresa J. & Corral, Roberto, 2013. "CO2 emissions from a spark ignition engine operating on natural gas–hydrogen blends (HCNG)," Applied Energy, Elsevier, vol. 101(C), pages 112-120.
    2. Sen, Asok K. & Wang, Jinhua & Huang, Zuohua, 2011. "Investigating the effect of hydrogen addition on cyclic variability in a natural gas spark ignition engine: Wavelet multiresolution analysis," Applied Energy, Elsevier, vol. 88(12), pages 4860-4866.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Si-Yuan & Zhou, Jin & Liu, Shi-Jie & Peng, Hao-Yang & Yuan, Xue-Qiang, 2022. "Continuous rotating detonation engine fueled by ammonia," Energy, Elsevier, vol. 252(C).
    2. Simon Drost & Sven Eckart & Chunkan Yu & Robert Schießl & Hartmut Krause & Ulrich Maas, 2023. "Numerical and Experimental Investigations of CH 4 /H 2 Mixtures: Ignition Delay Times, Laminar Burning Velocity and Extinction Limits," Energies, MDPI, vol. 16(6), pages 1-17, March.
    3. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Wang, Du & Ji, Changwei & Wang, Shuofeng & Yang, Jinxin & Tang, Chuanqi, 2019. "Experimental investigation on near wall ignited lean methane/hydrogen/air flame," Energy, Elsevier, vol. 168(C), pages 1094-1103.
    5. Wojciech Rudy & Andrzej Teodorczyk, 2020. "Numerical Simulations of DDT Limits in Hydrogen-Air Mixtures in Obstacle Laden Channel," Energies, MDPI, vol. 14(1), pages 1-19, December.
    6. Zhang, Qibin & Wang, Ke & Dong, Rongxiao & Fan, Wei & Lu, Wei & Wang, Yongjia, 2019. "Experimental research on propulsive performance of the pulse detonation rocket engine with a fluidic nozzle," Energy, Elsevier, vol. 166(C), pages 1267-1275.
    7. Liu, Lijuan & Zhang, Qi, 2019. "Flame range and energy output in two-phase propylene oxide/air mixtures beyond the original premixed zone," Energy, Elsevier, vol. 171(C), pages 666-677.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
    2. Yang, Jinxin & Ji, Changwei & Wang, Shuofeng & Wang, Du & Ma, Zedong & Zhang, Boya, 2018. "Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment," Applied Energy, Elsevier, vol. 224(C), pages 34-41.
    3. Su, Teng & Ji, Changwei & Wang, Shuofeng & Shi, Lei & Yang, Jinxin & Cong, Xiaoyu, 2017. "Investigation on performance of a hydrogen-gasoline rotary engine at part load and lean conditions," Applied Energy, Elsevier, vol. 205(C), pages 683-691.
    4. Woo, Seungchul & Lee, Kihyung, 2022. "Development and feasibility assessment of on-board catalytic reforming system for LPG engine to produce hydrogen in the transient state," Applied Energy, Elsevier, vol. 327(C).
    5. Diéguez, P.M. & Urroz, J.C. & Marcelino-Sádaba, S. & Pérez-Ezcurdia, A. & Benito-Amurrio, M. & Sáinz, D. & Gandía, L.M., 2014. "Experimental study of the performance and emission characteristics of an adapted commercial four-cylinder spark ignition engine running on hydrogen–methane mixtures," Applied Energy, Elsevier, vol. 113(C), pages 1068-1076.
    6. Ji, Changwei & Yang, Jinxin & Liu, Xiaolong & Wang, Shuofeng & Zhang, Bo & Wang, Du, 2016. "Enhancing the fuel economy and emissions performance of a gasoline engine-powered vehicle with idle elimination and hydrogen start," Applied Energy, Elsevier, vol. 182(C), pages 135-144.
    7. Yang, Li-Ping & Song, En-Zhe & Ding, Shun-Liang & Brown, Richard J. & Marwan, Norbert & Ma, Xiu-Zhen, 2016. "Analysis of the dynamic characteristics of combustion instabilities in a pre-mixed lean-burn natural gas engine," Applied Energy, Elsevier, vol. 183(C), pages 746-759.
    8. Cinti, G. & Bidini, G. & Hemmes, K., 2019. "Comparison of the solid oxide fuel cell system for micro CHP using natural gas with a system using a mixture of natural gas and hydrogen," Applied Energy, Elsevier, vol. 238(C), pages 69-77.
    9. Fanelli, Emanuele & Viggiano, Annarita & Braccio, Giacobbe & Magi, Vinicio, 2014. "On laminar flame speed correlations for H2/CO combustion in premixed spark ignition engines," Applied Energy, Elsevier, vol. 130(C), pages 166-180.
    10. Paweł Fabiś & Bartosz Flekiewicz, 2021. "Influence of LPG and DME Composition on Spark Ignition Engine Performance," Energies, MDPI, vol. 14(17), pages 1-18, September.
    11. Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
    12. Li, Lifu & Zhang, Zhongbo, 2019. "Investigation on steam direct injection in a natural gas engine for fuel savings," Energy, Elsevier, vol. 183(C), pages 958-970.
    13. Kim, Joonsuk & Chun, Kwang Min & Song, Soonho & Baek, Hong-Kil & Lee, Seung Woo, 2018. "Hydrogen effects on the combustion stability, performance and emissions of a turbo gasoline direct injection engine in various air/fuel ratios," Applied Energy, Elsevier, vol. 228(C), pages 1353-1361.
    14. Zareei, Javad & Ghadamkheir, Kourosh & Farkhondeh, Seyed Alireza & Abed, Azher M. & Catalan Opulencia, Maria Jade & Nuñez Alvarez, José Ricardo, 2022. "Numerical investigation of hydrogen enriched natural gas effects on different characteristics of a SI engine with modified injection mechanism from port to direct injection," Energy, Elsevier, vol. 255(C).
    15. Kouchachvili, Lia & Entchev, Evgueniy, 2018. "Power to gas and H2/NG blend in SMART energy networks concept," Renewable Energy, Elsevier, vol. 125(C), pages 456-464.
    16. Darzi, Mahdi & Johnson, Derek & Ulishney, Chris & Clark, Nigel, 2018. "Low pressure direct injection strategies effect on a small SI natural gas two-stroke engine’s energy distribution and emissions," Applied Energy, Elsevier, vol. 230(C), pages 1585-1602.
    17. Lee, Chia-fon & Pang, Yuxin & Wu, Han & Nithyanandan, Karthik & Liu, Fushui, 2020. "An optical investigation of substitution rates on natural gas/diesel dual-fuel combustion in a diesel engine," Applied Energy, Elsevier, vol. 261(C).
    18. Duan, Xiongbo & Li, Yangyang & Liu, Jingping & Guo, Genmiao & Fu, Jianqin & Zhang, Quanchang & Zhang, Shiheng & Liu, Weiqiang, 2019. "Experimental study the effects of various compression ratios and spark timing on performance and emission of a lean-burn heavy-duty spark ignition engine fueled with methane gas and hydrogen blends," Energy, Elsevier, vol. 169(C), pages 558-571.
    19. Navarro, Emilio & Leo, Teresa J. & Corral, Roberto, 2013. "CO2 emissions from a spark ignition engine operating on natural gas–hydrogen blends (HCNG)," Applied Energy, Elsevier, vol. 101(C), pages 112-120.
    20. Donateo, Teresa & Tornese, Federica & Laforgia, Domenico, 2013. "Computer-aided conversion of an engine from diesel to methane," Applied Energy, Elsevier, vol. 108(C), pages 8-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:116:y:2016:i:p3:p:1479-1483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.