IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v115y2016ip1p378-385.html
   My bibliography  Save this article

Dampening of wood batch combustion heat release using a phase change material heat storage: Material selection and heat storage property optimization

Author

Listed:
  • Kristjansson, Kolbeinn
  • Næss, Erling
  • Skreiberg, Øyvind

Abstract

The use of wood stoves for space heating in energy effective residential buildings can be problematic due to the batch combustion giving a highly transient heat production and the limited regulation of the combustion process. Increasing the heat storage capacity and lowering the maximum heat release from the stove has been proposed to improve the utility of wood stoves. Latent Heat Storage (LHS) solutions will lower and even out the heat release from stoves. However, finding a suitable Phase Change Material (PCM) for a LHS solution can be problematic. In this work an analytical method for ranking PCM candidates for LHS solutions is proposed. The method takes into account PCM properties, in addition to LHS properties that have to be tailored to the selected PCM. The method is validated with numerical models using realistic heat production profiles from wood stoves. The numerical results show significant benefits of using PCMs in LHS solutions over traditional solutions. There exists significant work on PCMs and their properties, but little work on how to select a PCM for a given application. This work contributes to a more efficient selection process, decreasing the work required to select the optimum PCM for a LHS.

Suggested Citation

  • Kristjansson, Kolbeinn & Næss, Erling & Skreiberg, Øyvind, 2016. "Dampening of wood batch combustion heat release using a phase change material heat storage: Material selection and heat storage property optimization," Energy, Elsevier, vol. 115(P1), pages 378-385.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:378-385
    DOI: 10.1016/j.energy.2016.08.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216311847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.08.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    2. Alkilani, Mahmud M. & Sopian, K. & Alghoul, M.A. & Sohif, M. & Ruslan, M.H., 2011. "Review of solar air collectors with thermal storage units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1476-1490, April.
    3. Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
    4. Ling, Ziye & Zhang, Zhengguo & Shi, Guoquan & Fang, Xiaoming & Wang, Lei & Gao, Xuenong & Fang, Yutang & Xu, Tao & Wang, Shuangfeng & Liu, Xiaohong, 2014. "Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 427-438.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    2. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    3. Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.
    4. Li, C. & Wang, R.Z., 2012. "Building integrated energy storage opportunities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6191-6211.
    5. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.
    7. Castell, A. & Solé, C., 2015. "An overview on design methodologies for liquid–solid PCM storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 289-307.
    8. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    9. Lukas Hegner & Stefan Krimmel & Rebecca Ravotti & Dominic Festini & Jörg Worlitschek & Anastasia Stamatiou, 2021. "Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material," Energies, MDPI, vol. 14(2), pages 1-26, January.
    10. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Mohammadreza Ebrahimnataj Tiji & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Abbas Ebrahimi & Rohollah Babaei Mahani & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement," Energies, MDPI, vol. 14(22), pages 1-23, November.
    12. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    13. Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
    14. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    15. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    17. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    18. Zhang, Hanfei & Shin, Donghyun & Santhanagopalan, Sunand, 2019. "Microencapsulated binary carbonate salt mixture in silica shell with enhanced effective heat capacity for high temperature latent heat storage," Renewable Energy, Elsevier, vol. 134(C), pages 1156-1162.
    19. AL-Saadi, Saleh Nasser & Zhai, Zhiqiang (John), 2013. "Modeling phase change materials embedded in building enclosure: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 659-673.
    20. Xu, J. & Li, Y. & Wang, R.Z. & Liu, W., 2014. "Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application," Energy, Elsevier, vol. 67(C), pages 63-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:378-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.