Energy conversion under conjugate conduction, magneto-convection, diffusion and nonlinear radiation over a non-linearly stretching sheet with slip and multiple convective boundary conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2016.05.063
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jang, Jiin-Yuh & Tsai, Ying-Chi & Wu, Chan-Wei, 2013. "A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate fin heat sink," Energy, Elsevier, vol. 53(C), pages 270-281.
- Sertkaya, Ahmet Ali & Bilir, Şefik & Kargıcı, Suna, 2011. "Experimental investigation of the effects of orientation angle on heat transfer performance of pin-finned surfaces in natural convection," Energy, Elsevier, vol. 36(3), pages 1513-1517.
- Torabi, Mohsen & Aziz, Abdul & Zhang, Kaili, 2013. "A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities," Energy, Elsevier, vol. 51(C), pages 243-256.
- Elshafei, E.A.M., 2010. "Natural convection heat transfer from a heat sink with hollow/perforated circular pin fins," Energy, Elsevier, vol. 35(7), pages 2870-2877.
- Mohammed J Uddin & Waqar A Khan & Ahmad Izani Md Ismail, 2015. "G-Jitter Induced Magnetohydrodynamics Flow of Nanofluid with Constant Convective Thermal and Solutal Boundary Conditions," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
- Hsiao, Kai-Long, 2013. "Energy conversion conjugate conduction–convection and radiation over non-linearly extrusion stretching sheet with physical multimedia effects," Energy, Elsevier, vol. 59(C), pages 494-502.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hsiao, Kai-Long, 2013. "Energy conversion conjugate conduction–convection and radiation over non-linearly extrusion stretching sheet with physical multimedia effects," Energy, Elsevier, vol. 59(C), pages 494-502.
- Hazarika, Saheera Azmi & Bhanja, Dipankar & Nath, Sujit & Kundu, Balaram, 2015. "Analytical solution to predict performance and optimum design parameters of a constructal T-shaped fin with simultaneous heat and mass transfer," Energy, Elsevier, vol. 84(C), pages 303-316.
- Jang, Daeseok & Yook, Se-Jin & Lee, Kwan-Soo, 2014. "Optimum design of a radial heat sink with a fin-height profile for high-power LED lighting applications," Applied Energy, Elsevier, vol. 116(C), pages 260-268.
- Torabi, Mohsen & Aziz, Abdul & Zhang, Kaili, 2013. "A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities," Energy, Elsevier, vol. 51(C), pages 243-256.
- Basak, Tanmay & Anandalakshmi, R. & Kumar, Pushpendra & Roy, S., 2012. "Entropy generation vs energy flow due to natural convection in a trapezoidal cavity with isothermal and non-isothermal hot bottom wall," Energy, Elsevier, vol. 37(1), pages 514-532.
- Kundu, Balaram & Lee, Kwan-Soo, 2012. "A novel analysis for calculating the smallest envelope shape of wet fins with a nonlinear mode of surface transport," Energy, Elsevier, vol. 44(1), pages 527-543.
- Kundu, Balaram & Lee, Kwan-Soo, 2012. "Analytic solution for heat transfer of wet fins on account of all nonlinearity effects," Energy, Elsevier, vol. 41(1), pages 354-367.
- Shu, Gequn & Ma, Xiaonan & Tian, Hua & Yang, Haoqi & Chen, Tianyu & Li, Xiaoya, 2018. "Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery," Energy, Elsevier, vol. 160(C), pages 612-624.
- Sertkaya, Ahmet Ali & Bilir, Şefik & Kargıcı, Suna, 2011. "Experimental investigation of the effects of orientation angle on heat transfer performance of pin-finned surfaces in natural convection," Energy, Elsevier, vol. 36(3), pages 1513-1517.
- Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
- Chen, Min & Gao, Xin, 2014. "Theoretical, experimental and numerical diagnose of critical power point of thermoelectric generators," Energy, Elsevier, vol. 78(C), pages 364-372.
- Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
- Torabi, Mohsen & Zhang, Kaili & Yang, Guangcheng & Wang, Jun & Wu, Peng, 2014. "Temperature distribution, local and total entropy generation analyses in asymmetric cooling composite geometries with multiple nonlinearities: Effect of imperfect thermal contact," Energy, Elsevier, vol. 78(C), pages 218-234.
- Wu, Yongjia & Yang, Jihui & Chen, Shikui & Zuo, Lei, 2018. "Thermo-element geometry optimization for high thermoelectric efficiency," Energy, Elsevier, vol. 147(C), pages 672-680.
- Badescu, Viorel, 2015. "Optimal profile of heat transfer pin fins under technological constraints," Energy, Elsevier, vol. 93(P2), pages 2292-2298.
- Favarel, Camille & Bédécarrats, Jean-Pierre & Kousksou, Tarik & Champier, Daniel, 2014. "Numerical optimization of the occupancy rate of thermoelectric generators to produce the highest electrical power," Energy, Elsevier, vol. 68(C), pages 104-116.
- Kundu, Balaram & Lee, Kwan-Soo, 2014. "Analytical tools for calculating the maximum heat transfer of annular stepped fins with internal heat generation and radiation effects," Energy, Elsevier, vol. 76(C), pages 733-748.
- Kaluri, Ram Satish & Basak, Tanmay, 2010. "Analysis of distributed thermal management policy for energy-efficient processing of materials by natural convection," Energy, Elsevier, vol. 35(12), pages 5093-5107.
- Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Li, Yang & Zhang, Rui & Huang, Liang & Xie, Changjun & Shi, Ying, 2024. "Taguchi optimization and thermoelectrical analysis of a pin fin annular thermoelectric generator for automotive waste heat recovery," Renewable Energy, Elsevier, vol. 220(C).
- Chu, Wen-xiao & Ma, Ting & Zeng, Min & Qu, Ting & Wang, Liang-bi & Wang, Qiu-wang, 2014. "Improvements on maldistribution of a high temperature multi-channel compact heat exchanger by different inlet baffles," Energy, Elsevier, vol. 75(C), pages 104-115.
More about this item
Keywords
Slip; Magneto-convective free convection; Group analysis; Thermal and mass convective boundary conditions; Nonlinear radiation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:1119-1129. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.