IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v111y2016icp453-467.html
   My bibliography  Save this article

Improved threshold fouling models for crude oils

Author

Listed:
  • Shetty, Nitin
  • Deshannavar, Umesh Basanagouda
  • Marappagounder, Ramasamy
  • Pendyala, Rajashekhar

Abstract

The existing threshold fouling models always predict an increase in initial fouling rates with an increase in bulk temperature which may not hold good for some crude oils. In this study, an improved threshold fouling model is proposed which uses an effective film temperature in the Arrhenius expression. Experiments were conducted in a high pressure, high temperature recirculation flow pilot-scale fouling test rig with three test crude oils with differing properties under the operating conditions of surface and bulk temperatures ranging from 243 to 334 °C and 82–180 °C, respectively, and velocities at 0.35 and 0.5 m/s. The proposed model has been shown to predict initial fouling rates very closely with the experimental data with R2 values above 0.98 for the three test crude oils used in this study.

Suggested Citation

  • Shetty, Nitin & Deshannavar, Umesh Basanagouda & Marappagounder, Ramasamy & Pendyala, Rajashekhar, 2016. "Improved threshold fouling models for crude oils," Energy, Elsevier, vol. 111(C), pages 453-467.
  • Handle: RePEc:eee:energy:v:111:y:2016:i:c:p:453-467
    DOI: 10.1016/j.energy.2016.05.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421630768X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.05.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zubair, Syed M. & Sheikh, Anwar K. & Younas, Muhammad & Budair, M.O., 2000. "A risk based heat exchanger analysis subject to fouling," Energy, Elsevier, vol. 25(5), pages 427-443.
    2. Mohanty, Dillip Kumar & Singru, Pravin M., 2011. "Use of C-factor for monitoring of fouling in a shell and tube heat exchanger," Energy, Elsevier, vol. 36(5), pages 2899-2904.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rached Ben-Mansour & Sami El-Ferik & Mustafa Al-Naser & Bilal A. Qureshi & Mohammed Ahmed Mohammed Eltoum & Ahmed Abuelyamen & Fouad Al-Sunni & Ridha Ben Mansour, 2023. "Experimental/Numerical Investigation and Prediction of Fouling in Multiphase Flow Heat Exchangers: A Review," Energies, MDPI, vol. 16(6), pages 1-32, March.
    2. Markowski, Mariusz & Trzcinski, Przemyslaw, 2019. "On-line control of the heat exchanger network under fouling constraints," Energy, Elsevier, vol. 185(C), pages 521-526.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tremblay, Veronique & Zmeureanu, Radu, 2014. "Benchmarking models for the ongoing commissioning of heat recovery process in a central heating and cooling plant," Energy, Elsevier, vol. 70(C), pages 194-203.
    2. Walker, Michael E. & Theregowda, Ranjani B. & Safari, Iman & Abbasian, Javad & Arastoopour, Hamid & Dzombak, David A. & Hsieh, Ming-Kai & Miller, David C., 2013. "Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling," Energy, Elsevier, vol. 60(C), pages 139-147.
    3. Wang, Yufei & Zhan, Shihui & Feng, Xiao, 2015. "Optimization of velocity for energy saving and mitigating fouling in a crude oil preheat train with fixed network structure," Energy, Elsevier, vol. 93(P2), pages 1478-1488.
    4. Min-Hwi Kim & Deuk-Won Kim & Gwangwoo Han & Jaehyeok Heo & Dong-Won Lee, 2021. "Ground Source and Sewage Water Source Heat Pump Systems for Block Heating and Cooling Network," Energies, MDPI, vol. 14(18), pages 1-22, September.
    5. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    6. Walker, Michael E. & Safari, Iman & Theregowda, Ranjani B. & Hsieh, Ming-Kai & Abbasian, Javad & Arastoopour, Hamid & Dzombak, David A. & Miller, David C., 2012. "Economic impact of condenser fouling in existing thermoelectric power plants," Energy, Elsevier, vol. 44(1), pages 429-437.
    7. Guelpa, Elisa & Verda, Vittorio, 2020. "Automatic fouling detection in district heating substations: Methodology and tests," Applied Energy, Elsevier, vol. 258(C).
    8. Aguilera, José Joaquín & Meesenburg, Wiebke & Ommen, Torben & Markussen, Wiebke Brix & Poulsen, Jonas Lundsted & Zühlsdorf, Benjamin & Elmegaard, Brian, 2022. "A review of common faults in large-scale heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Mohanty, Dillip Kumar & Singru, Pravin M., 2011. "Use of C-factor for monitoring of fouling in a shell and tube heat exchanger," Energy, Elsevier, vol. 36(5), pages 2899-2904.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:111:y:2016:i:c:p:453-467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.