IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v94y2016icp366-376.html
   My bibliography  Save this article

Material constraints related to storage of future European renewable electricity surpluses with CO2 methanation

Author

Listed:
  • Meylan, Frédéric D.
  • Moreau, Vincent
  • Erkman, Suren

Abstract

The main challenges associated with a growing production of renewable electricity are intermittency and dispersion. Intermittency generates spikes in production, which need to be curtailed when exceeding consumption. Dispersion means electricity has to be transported over long distances between production and consumption sites. In the Directive 2009/28/EC, the European Commission recommends sustainable and effective measures to prevent curtailments and facilitate transportation of renewable electricity. This article explores the material constraints of storing and transporting surplus renewable electricity by conversion into synthetic methane. Europe is considered for its mix of energy technologies, data availability and multiple energy pathways to 2050. Results show that the requirements for key materials and land remain relatively low, respecting the recommendations of the EU Commission. By 2050, more than 6 million tons of carbon dioxide might be transformed into methane annually within the EU. The efficiency of renewable power methane production is also compared to the natural process of converting solar into chemical energy (i.e. photosynthesis), both capturing and reenergizing carbon dioxide. Overall, the production of renewable methane (including carbon dioxide capture) is more efficient and less material intensive than the production of biofuels derived from photosynthesis and biomass conversion.

Suggested Citation

  • Meylan, Frédéric D. & Moreau, Vincent & Erkman, Suren, 2016. "Material constraints related to storage of future European renewable electricity surpluses with CO2 methanation," Energy Policy, Elsevier, vol. 94(C), pages 366-376.
  • Handle: RePEc:eee:enepol:v:94:y:2016:i:c:p:366-376
    DOI: 10.1016/j.enpol.2016.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516301811
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rasmussen, Morten Grud & Andresen, Gorm Bruun & Greiner, Martin, 2012. "Storage and balancing synergies in a fully or highly renewable pan-European power system," Energy Policy, Elsevier, vol. 51(C), pages 642-651.
    2. Kleijn, Rene & van der Voet, Ester, 2010. "Resource constraints in a hydrogen economy based on renewable energy sources: An exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2784-2795, December.
    3. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    4. Heide, Dominik & Greiner, Martin & von Bremen, Lüder & Hoffmann, Clemens, 2011. "Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation," Renewable Energy, Elsevier, vol. 36(9), pages 2515-2523.
    5. Ahern, Eoin P. & Deane, Paul & Persson, Tobias & Ó Gallachóir, Brian & Murphy, Jerry D., 2015. "A perspective on the potential role of renewable gas in a smart energy island system," Renewable Energy, Elsevier, vol. 78(C), pages 648-656.
    6. Steinke, Florian & Wolfrum, Philipp & Hoffmann, Clemens, 2013. "Grid vs. storage in a 100% renewable Europe," Renewable Energy, Elsevier, vol. 50(C), pages 826-832.
    7. Johst, M. & Rothstein, B., 2014. "Reduction of cooling water consumption due to photovoltaic and wind electricity feed-in," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 311-317.
    8. Davis, William & Martín, Mariano, 2014. "Optimal year-round operation for methane production from CO2 and water using wind energy," Energy, Elsevier, vol. 69(C), pages 497-505.
    9. Deane, J.P. & Ó Gallachóir, B.P. & McKeogh, E.J., 2010. "Techno-economic review of existing and new pumped hydro energy storage plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1293-1302, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim Maya Yavor & Vanessa Bach & Matthias Finkbeiner, 2021. "Resource Assessment of Renewable Energy Systems—A Review," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    2. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    3. Chae-Eun Yeo & Minhye Seo & Dongju Kim & Cheonwoo Jeong & Hye-Sun Shin & Suhyun Kim, 2021. "Optimization of Operating Conditions for CO 2 Methanation Process Using Design of Experiments," Energies, MDPI, vol. 14(24), pages 1-12, December.
    4. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    5. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    6. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
    7. Eckard Helmers & Johannes Dietz & Martin Weiss, 2020. "Sensitivity Analysis in the Life-Cycle Assessment of Electric vs. Combustion Engine Cars under Approximate Real-World Conditions," Sustainability, MDPI, vol. 12(3), pages 1-31, February.
    8. Vincent Moreau & Piero Carlo Dos Reis & François Vuille, 2019. "Enough Metals? Resource Constraints to Supply a Fully Renewable Energy System," Resources, MDPI, vol. 8(1), pages 1-18, January.
    9. Eveloy, Valerie, 2019. "Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 550-571.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    2. Gawlick, Julia & Hamacher, Thomas, 2023. "Impact of coupling the electricity and hydrogen sector in a zero-emission European energy system in 2050," Energy Policy, Elsevier, vol. 180(C).
    3. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    4. Bartlett, Stuart & Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Manso, Pedro & Lehning, Michael, 2018. "Charting the course: A possible route to a fully renewable Swiss power system," Energy, Elsevier, vol. 163(C), pages 942-955.
    5. Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
    6. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    7. Rodríguez, Rolando A. & Becker, Sarah & Andresen, Gorm B. & Heide, Dominik & Greiner, Martin, 2014. "Transmission needs across a fully renewable European power system," Renewable Energy, Elsevier, vol. 63(C), pages 467-476.
    8. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    9. François, B. & Borga, M. & Creutin, J.D. & Hingray, B. & Raynaud, D. & Sauterleute, J.F., 2016. "Complementarity between solar and hydro power: Sensitivity study to climate characteristics in Northern-Italy," Renewable Energy, Elsevier, vol. 86(C), pages 543-553.
    10. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    11. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.
    12. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    13. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    14. Ma, Jianli & Li, Qi & Kühn, Michael & Nakaten, Natalie, 2018. "Power-to-gas based subsurface energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 478-496.
    15. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    16. Becker, S. & Rodriguez, R.A. & Andresen, G.B. & Schramm, S. & Greiner, M., 2014. "Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply," Energy, Elsevier, vol. 64(C), pages 404-418.
    17. Jafari, Mehdi & Botterud, Audun & Sakti, Apurba, 2022. "Decarbonizing power systems: A critical review of the role of energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    19. Ford, Rebecca & Hardy, Jeffrey, 2020. "Are we seeing clearly? The need for aligned vision and supporting strategies to deliver net-zero electricity systems," Energy Policy, Elsevier, vol. 147(C).
    20. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:94:y:2016:i:c:p:366-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.