IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v62y2013icp1420-1427.html
   My bibliography  Save this article

Implications of the North Atlantic Oscillation for a UK–Norway Renewable power system

Author

Listed:
  • Ely, Caroline R.
  • Brayshaw, David J.
  • Methven, John
  • Cox, James
  • Pearce, Oliver

Abstract

UK wind-power capacity is increasing and new transmission links are proposed with Norway, where hydropower dominates the electricity mix. Weather affects both these renewable resources and the demand for electricity. The dominant large-scale pattern of Euro-Atlantic atmospheric variability is the North Atlantic Oscillation (NAO), associated with positive correlations in wind, temperature and precipitation over northern Europe. The NAO's effect on wind-power and demand in the UK and Norway is examined, focussing on March when Norwegian hydropower reserves are low and the combined power system might be most susceptible to atmospheric variations. The NCEP/NCAR meteorological reanalysis dataset (1948–2010) is used to drive simple models for demand and wind-power, and ‘demand-net-wind’ (DNW) is estimated for positive, neutral and negative NAO states. Cold, calm conditions in NAO− cause increased demand and decreased wind-power compared to other NAO states. Under a 2020 wind-power capacity scenario, the increase in DNW in NAO− relative to NAO neutral is equivalent to nearly 25% of the present-day average rate of March Norwegian hydropower usage. As the NAO varies on long timescales (months to decades), and there is potentially some skill in monthly predictions, we argue that it is important to understand its impact on European power systems.

Suggested Citation

  • Ely, Caroline R. & Brayshaw, David J. & Methven, John & Cox, James & Pearce, Oliver, 2013. "Implications of the North Atlantic Oscillation for a UK–Norway Renewable power system," Energy Policy, Elsevier, vol. 62(C), pages 1420-1427.
  • Handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:1420-1427
    DOI: 10.1016/j.enpol.2013.06.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513005223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.06.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taylor, James W. & Buizza, Roberto, 2003. "Using weather ensemble predictions in electricity demand forecasting," International Journal of Forecasting, Elsevier, vol. 19(1), pages 57-70.
    2. Sinden, Graham, 2007. "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand," Energy Policy, Elsevier, vol. 35(1), pages 112-127, January.
    3. Oswald, James & Raine, Mike & Ashraf-Ball, Hezlin, 2008. "Will British weather provide reliable electricity?," Energy Policy, Elsevier, vol. 36(8), pages 3202-3215, August.
    4. Jessie Cherry & Heidi Cullen & Martin Visbeck & Arthur Small & Cintia Uvo, 2005. "Impacts of the North Atlantic Oscillation on Scandinavian Hydropower Production and Energy Markets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(6), pages 673-691, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    2. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    3. van Zuijlen, Bas & Zappa, William & Turkenburg, Wim & van der Schrier, Gerard & van den Broek, Machteld, 2019. "Cost-optimal reliable power generation in a deep decarbonisation future," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Cradden, Lucy C. & McDermott, Frank & Zubiate, Laura & Sweeney, Conor & O'Malley, Mark, 2017. "A 34-year simulation of wind generation potential for Ireland and the impact of large-scale atmospheric pressure patterns," Renewable Energy, Elsevier, vol. 106(C), pages 165-176.
    5. Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
    6. Coker, Phil J. & Bloomfield, Hannah C. & Drew, Daniel R. & Brayshaw, David J., 2020. "Interannual weather variability and the challenges for Great Britain’s electricity market design," Renewable Energy, Elsevier, vol. 150(C), pages 509-522.
    7. Bowen Li & Sukanta Basu & Simon J. Watson & Herman W. J. Russchenberg, 2021. "A Brief Climatology of Dunkelflaute Events over and Surrounding the North and Baltic Sea Areas," Energies, MDPI, vol. 14(20), pages 1-14, October.
    8. Commin, Andrew N. & French, Andrew S. & Marasco, Matteo & Loxton, Jennifer & Gibb, Stuart W. & McClatchey, John, 2017. "The influence of the North Atlantic Oscillation on diverse renewable generation in Scotland," Applied Energy, Elsevier, vol. 205(C), pages 855-867.
    9. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Luc Gaffard & Mauro Napoletano, 2012. "Agent-based models and economic policy," Post-Print hal-03461120, HAL.
    2. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    3. Green, Richard & Vasilakos, Nicholas, 2010. "Market behaviour with large amounts of intermittent generation," Energy Policy, Elsevier, vol. 38(7), pages 3211-3220, July.
    4. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    5. Coker, Phil & Barlow, Janet & Cockerill, Tim & Shipworth, David, 2013. "Measuring significant variability characteristics: An assessment of three UK renewables," Renewable Energy, Elsevier, vol. 53(C), pages 111-120.
    6. repec:hal:spmain:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    7. Gorg Abdelmassih & Mohammed Al-Numay & Abdelali El Aroudi, 2021. "Map Optimization Fuzzy Logic Framework in Wind Turbine Site Selection with Application to the USA Wind Farms," Energies, MDPI, vol. 14(19), pages 1-15, September.
    8. Früh, Wolf-Gerrit, 2013. "Long-term wind resource and uncertainty estimation using wind records from Scotland as example," Renewable Energy, Elsevier, vol. 50(C), pages 1014-1026.
    9. Leahy, P.G. & Foley, A.M., 2012. "Wind generation output during cold weather-driven electricity demand peaks in Ireland," Energy, Elsevier, vol. 39(1), pages 48-53.
    10. repec:hal:wpspec:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    11. D J Brayshaw & C Dent & S Zachary, 2012. "Wind generation’s contribution to supporting peak electricity demand – meteorological insights," Journal of Risk and Reliability, , vol. 226(1), pages 44-50, February.
    12. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    13. repec:spo:wpmain:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    14. repec:spo:wpecon:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    15. Commin, Andrew N. & Davidson, Magnus W.H. & Largey, Nicola & Gaffney, Paul P.J. & Braidwood, David W. & Gibb, Stuart W. & McClatchey, John, 2017. "Spatial smoothing of onshore wind: Implications for strategic development in Scotland," Energy Policy, Elsevier, vol. 109(C), pages 36-48.
    16. Kubik, M.L. & Coker, P.J. & Hunt, C., 2012. "The role of conventional generation in managing variability," Energy Policy, Elsevier, vol. 50(C), pages 253-261.
    17. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    18. Foster, John & Bell, William Paul & Wild, Phillip & Sharma, Deepak & Sandu, Suwin & Froome, Craig & Wagner, Liam & Misra, Suchi & Bagia, Ravindra, 2013. "Analysis of institutional adaptability to redress electricity infrastructure vulnerability due to climate change," MPRA Paper 47787, University Library of Munich, Germany.
    19. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    20. Rubin, Ofir D. & Babcock, Bruce A., 2013. "The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets," Energy, Elsevier, vol. 59(C), pages 676-688.
    21. Aldersey-Williams, John & Broadbent, Ian D. & Strachan, Peter A., 2020. "Analysis of United Kingdom offshore wind farm performance using public data: Improving the evidence base for policymaking," Utilities Policy, Elsevier, vol. 62(C).
    22. Cristina Miranda & Reinaldo Castro Souza & Mônica Barros & Cristina Vidigal Cabral de Miranda, 2007. "Short Term Demand Forecasting Using Double Exponential Smoothing and Interventions to Account for Holidays and Temperature Effects," EcoMod2007 23900058, EcoMod.
    23. Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
    24. Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:1420-1427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.