IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v14y1992i3p226-232.html
   My bibliography  Save this article

Forecasting residential electricity consumption in Greece using monthly and quarterly data

Author

Listed:
  • Dikaios Tserkezos, E.

Abstract

No abstract is available for this item.

Suggested Citation

  • Dikaios Tserkezos, E., 1992. "Forecasting residential electricity consumption in Greece using monthly and quarterly data," Energy Economics, Elsevier, vol. 14(3), pages 226-232, July.
  • Handle: RePEc:eee:eneeco:v:14:y:1992:i:3:p:226-232
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0140-9883(92)90016-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Nikoloudaki & Dikaios Tserkezos, 2008. "Temporal Aggregation Effects in Choosing the Optimal Lag Order in Stable ARMA Models: Some Monte Carlo Results," Working Papers 0822, University of Crete, Department of Economics.
    2. Haitao Yin & Hui Zhou & Kai Zhu, 2016. "Long- and short-run elasticities of residential electricity consumption in China: a partial adjustment model with panel data," Applied Economics, Taylor & Francis Journals, vol. 48(28), pages 2587-2599, June.
    3. Thomas Fullerton & Roberto Tinajero & Jorge Mendoza Cota, 2007. "An Empirical Analysis of Tijuana Water Consumption," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 35(3), pages 357-369, September.
    4. Rallapalli, Srinivasa Rao & Ghosh, Sajal, 2012. "Forecasting monthly peak demand of electricity in India—A critique," Energy Policy, Elsevier, vol. 45(C), pages 516-520.
    5. Thomas Fullerton & Roberto Tinajero & Martha Barraza de Anda, 2006. "Short-Term Water Consumption Patterns in Ciudad Juárez, Mexico," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 34(4), pages 467-479, December.
    6. Hondroyiannis, George, 2004. "Estimating residential demand for electricity in Greece," Energy Economics, Elsevier, vol. 26(3), pages 319-334, May.
    7. Sajal Ghosh & Anjana Das, 2002. "Short-run electricity demand forecasts in Maharashtra," Applied Economics, Taylor & Francis Journals, vol. 34(8), pages 1055-1059.
    8. Gam, Imen & Ben Rejeb, Jaleleddine, 2012. "Electricity demand in Tunisia," Energy Policy, Elsevier, vol. 45(C), pages 714-720.
    9. Thomas M Fullerton Jr & Arturo Elias, 2004. "Short-Term Water Consumption Dynamics in El Paso, Texas," Others 0410005, University Library of Munich, Germany.
    10. Varma, Rashmi & Sushil,, 2019. "Bridging the electricity demand and supply gap using dynamic modeling in the Indian context," Energy Policy, Elsevier, vol. 132(C), pages 515-535.
    11. Thomas M. Fullerton Jr. & Ana Cecilia Nava, 2004. "Short-Term Water Dynamics in Chihuahua City, Mexico," Urban/Regional 0404001, University Library of Munich, Germany.
    12. Steinbuks, Jevgenijs, 2019. "Assessing the accuracy of electricity production forecasts in developing countries," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1175-1185.
    13. Rapanos, Vassilis T. & Polemis, Michael L., 2005. "Energy demand and environmental taxes: the case of Greece," Energy Policy, Elsevier, vol. 33(14), pages 1781-1788, September.
    14. Angelopoulos, Dimitrios & Siskos, Yannis & Psarras, John, 2019. "Disaggregating time series on multiple criteria for robust forecasting: The case of long-term electricity demand in Greece," European Journal of Operational Research, Elsevier, vol. 275(1), pages 252-265.
    15. Gao, Feng & Chi, Hong & Shao, Xueyan, 2021. "Forecasting residential electricity consumption using a hybrid machine learning model with online search data," Applied Energy, Elsevier, vol. 300(C).
    16. Velasquez, Carlos E. & Zocatelli, Matheus & Estanislau, Fidellis B.G.L. & Castro, Victor F., 2022. "Analysis of time series models for Brazilian electricity demand forecasting," Energy, Elsevier, vol. 247(C).
    17. Son, Hyojoo & Kim, Changwan, 2017. "Short-term forecasting of electricity demand for the residential sector using weather and social variables," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 200-207.
    18. Tsani, Stela Z., 2010. "Energy consumption and economic growth: A causality analysis for Greece," Energy Economics, Elsevier, vol. 32(3), pages 582-590, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:14:y:1992:i:3:p:226-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.