Using the Bayesian sampling method to estimate corporate loss given default distribution
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jempfin.2024.101540
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
- Raydonal Ospina & Silvia Ferrari, 2010. "Inflated beta distributions," Statistical Papers, Springer, vol. 51(1), pages 111-126, January.
- Jobst, Rainer & Kellner, Ralf & Rösch, Daniel, 2020. "Bayesian loss given default estimation for European sovereign bonds," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1073-1091.
- Ellen Tobback & David Martens & Tony Van Gestel & Bart Baesens, 2014. "Forecasting Loss Given Default models: impact of account characteristics and the macroeconomic state," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 376-392, March.
- Merton, Robert C, 1974.
"On the Pricing of Corporate Debt: The Risk Structure of Interest Rates,"
Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
- Merton, Robert C., 1973. "On the pricing of corporate debt: the risk structure of interest rates," Working papers 684-73., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Altman, Edward I. & Kalotay, Egon A., 2014. "Ultimate recovery mixtures," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 116-129.
- Loterman, Gert & Brown, Iain & Martens, David & Mues, Christophe & Baesens, Bart, 2012. "Benchmarking regression algorithms for loss given default modeling," International Journal of Forecasting, Elsevier, vol. 28(1), pages 161-170.
- Abraham (Avri) Ravid, S. & Sverdlove, Ronald & Bris, Arturo & Coiculescu, Gabriela, 2015. "Conflicts in Bankruptcy and the Sequence of Debt Issues," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 50(6), pages 1353-1388, December.
- Hartmann-Wendels, Thomas & Miller, Patrick & Töws, Eugen, 2014. "Loss given default for leasing: Parametric and nonparametric estimations," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 364-375.
- Hurlin, Christophe & Leymarie, Jérémy & Patin, Antoine, 2018. "Loss functions for Loss Given Default model comparison," European Journal of Operational Research, Elsevier, vol. 268(1), pages 348-360.
- Phillip Li, 2018. "Efficient MCMC estimation of inflated beta regression models," Computational Statistics, Springer, vol. 33(1), pages 127-158, March.
- Katarzyna Bijak & Lyn C Thomas, 2015. "Modelling LGD for unsecured retail loans using Bayesian methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(2), pages 342-352, February.
- Edward I. Altman & Vellore M. Kishore, 1996. "Almost Everything You Wanted to Know about Recoveries on Defaulted Bonds," Financial Analysts Journal, Taylor & Francis Journals, vol. 52(6), pages 57-64, November.
- Sigrist, Fabio & Stahel, Werner A., 2011. "Using the Censored Gamma Distribution for Modeling Fractional Response Variables with an Application to Loss Given Default," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 673-710, November.
- Yashkir, Olga & Yashkir, Yuriy, 2013. "Loss Given Default Modelling: Comparative Analysis," MPRA Paper 46147, University Library of Munich, Germany.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hwang, Ruey-Ching & Chu, Chih-Kang & Yu, Kaizhi, 2020. "Predicting LGD distributions with mixed continuous and discrete ordinal outcomes," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1003-1022.
- Kaposty, Florian & Kriebel, Johannes & Löderbusch, Matthias, 2020. "Predicting loss given default in leasing: A closer look at models and variable selection," International Journal of Forecasting, Elsevier, vol. 36(2), pages 248-266.
- Ruey-Ching Hwang & Chih-Kang Chu & Kaizhi Yu, 2021. "Predicting the Loss Given Default Distribution with the Zero-Inflated Censored Beta-Mixture Regression that Allows Probability Masses and Bimodality," Journal of Financial Services Research, Springer;Western Finance Association, vol. 59(3), pages 143-172, June.
- Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).
- Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.
- Ruey-Ching Hwang & Huimin Chung & C. K. Chu, 2016. "A Two-Stage Probit Model for Predicting Recovery Rates," Journal of Financial Services Research, Springer;Western Finance Association, vol. 50(3), pages 311-339, December.
- Marc Gürtler & Marvin Zöllner, 2023. "Heterogeneities among credit risk parameter distributions: the modality defines the best estimation method," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 251-287, March.
- Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
- Nazemi, Abdolreza & Rezazadeh, Hani & Fabozzi, Frank J. & Höchstötter, Markus, 2022. "Deep learning for modeling the collection rate for third-party buyers," International Journal of Forecasting, Elsevier, vol. 38(1), pages 240-252.
- Hurlin, Christophe & Leymarie, Jérémy & Patin, Antoine, 2018. "Loss functions for Loss Given Default model comparison," European Journal of Operational Research, Elsevier, vol. 268(1), pages 348-360.
- Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019.
"Computational approaches and data analytics in financial services: A literature review,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02879937, HAL.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02880149, HAL.
- Nazemi, Abdolreza & Fatemi Pour, Farnoosh & Heidenreich, Konstantin & Fabozzi, Frank J., 2017. "Fuzzy decision fusion approach for loss-given-default modeling," European Journal of Operational Research, Elsevier, vol. 262(2), pages 780-791.
- Olson, Luke M. & Qi, Min & Zhang, Xiaofei & Zhao, Xinlei, 2021. "Machine learning loss given default for corporate debt," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 144-159.
- Nazemi, Abdolreza & Fabozzi, Frank J., 2024. "Interpretable machine learning for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 164(C).
- Jennifer Betz & Ralf Kellner & Daniel Rösch, 2021. "Time matters: How default resolution times impact final loss rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 619-644, June.
- Paolo Gambetti & Francesco Roccazzella & Frédéric Vrins, 2022.
"Meta-Learning Approaches for Recovery Rate Prediction,"
Risks, MDPI, vol. 10(6), pages 1-29, June.
- Gambetti, Paolo & Roccazzella, Francesco & Vrins, Frédéric, 2020. "Meta-learning approaches for recovery rate prediction," LIDAM Discussion Papers LFIN 2020007, Université catholique de Louvain, Louvain Finance (LFIN).
- Gambetti, Paolo & Roccazzella, Francesco & Vrins, Frédéric, 2022. "Meta-Learning Approaches for Recovery Rate Prediction," LIDAM Reprints LFIN 2022011, Université catholique de Louvain, Louvain Finance (LFIN).
- Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2017. "Enhancing two-stage modelling methodology for loss given default with support vector machines," European Journal of Operational Research, Elsevier, vol. 263(2), pages 679-689.
- Chih-Kang Chu & Ruey-Ching Hwang, 2019. "Predicting Loss Distributions for Small-Size Defaulted-Debt Portfolios Using a Convolution Technique that Allows Probability Masses to Occur at Boundary Points," Journal of Financial Services Research, Springer;Western Finance Association, vol. 56(1), pages 95-117, August.
- Miller, Patrick & Töws, Eugen, 2018. "Loss given default adjusted workout processes for leases," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 189-201.
- Yuta Tanoue & Satoshi Yamashita & Hideaki Nagahata, 2020. "Comparison study of two-step LGD estimation model with probability machines," Risk Management, Palgrave Macmillan, vol. 22(3), pages 155-177, September.
More about this item
Keywords
Finance; Loss given default; Bi-modal distribution; Bayesian; Zero-one-inflated beta model;All these keywords.
JEL classification:
- G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
- G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:79:y:2024:i:c:s0927539824000744. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.