IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v322y2025i3p908-919.html
   My bibliography  Save this article

Queues with service resetting

Author

Listed:
  • Bonomo, Ofek Lauber
  • Yechiali, Uri
  • Reuveni, Shlomi

Abstract

Service time fluctuations heavily affect the performance of queueing systems, causing long waiting times and backlogs. Recently, it was shown that when service times are solely determined by the server, service resetting can mitigate the deleterious effects of service time fluctuations and drastically improve queue performance (Bonomo et al., 2022). Yet, in many queueing systems, service times have two independent sources: the intrinsic server slowdown (S) and the jobs’ inherent size (X). In these, so-called S&X queues (Gardner et al., 2017), service resetting results in a newly drawn server slowdown while the inherent job size remains unchanged. Remarkably, resetting can be useful even then. To show this, we develop a comprehensive theory of S&X queues with service resetting. We consider cases where the total service time is either a product or a sum of the service slowdown and the jobs’ inherent size. For both cases, we derive expressions for the total service time distribution and its mean under a generic service resetting policy. Two prevalent resetting policies are discussed in more detail. We first analyze the constant-rate (Poissonian) resetting policy and derive explicit conditions under which resetting reduces the mean service time and improves queue performance. Next, we consider the sharp (deterministic) resetting policy. While results hold regardless of the arrival process, we dedicate special attention to the S&X-M/G/1 queue with service resetting, and obtain the distribution of the number of jobs in the system and their sojourn time. Our analysis highlights situations where service resetting can be used as an effective tool to improve the performance of S&X queueing systems. Several examples are given to illustrate our analytical results, which are corroborated using numerical simulations.

Suggested Citation

  • Bonomo, Ofek Lauber & Yechiali, Uri & Reuveni, Shlomi, 2025. "Queues with service resetting," European Journal of Operational Research, Elsevier, vol. 322(3), pages 908-919.
  • Handle: RePEc:eee:ejores:v:322:y:2025:i:3:p:908-919
    DOI: 10.1016/j.ejor.2024.12.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172400986X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.12.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Eitan Bachmat & Daniel Berend & Luba Sapir & Steven Skiena & Natan Stolyarov, 2009. "Analysis of Airplane Boarding Times," Operations Research, INFORMS, vol. 57(2), pages 499-513, April.
    2. Maurer, Sebastian M. & Huberman, Bernardo A., 2001. "Restart strategies and Internet congestion," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 641-654, March.
    3. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    4. Arazi, Arnon & Ben-Jacob, Eshel & Yechiali, Uri, 2004. "Bridging genetic networks and queueing theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 585-616.
    5. Ger Koole & Avishai Mandelbaum, 2002. "Queueing Models of Call Centers: An Introduction," Annals of Operations Research, Springer, vol. 113(1), pages 41-59, July.
    6. Niraj Kumar & Abhyudai Singh & Rahul V Kulkarni, 2015. "Transcriptional Bursting in Gene Expression: Analytical Results for General Stochastic Models," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-22, October.
    7. Konstantin Avrachenkov & Alexey Piunovskiy & Yi Zhang, 2018. "Hitting Times in Markov Chains with Restart and their Application to Network Centrality," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1173-1188, December.
    8. Jolakoski, Petar & Pal, Arnab & Sandev, Trifce & Kocarev, Ljupco & Metzler, Ralf & Stojkoski, Viktor, 2023. "A first passage under resetting approach to income dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    9. Bayliss, Christopher & Currie, Christine S.M. & Bennell, Julia A. & Martinez-Sykora, Antonio, 2021. "Queue-constrained packing: A vehicle ferry case study," European Journal of Operational Research, Elsevier, vol. 289(2), pages 727-741.
    10. Linus E. Schrage & Louis W. Miller, 1966. "The Queue M / G /1 with the Shortest Remaining Processing Time Discipline," Operations Research, INFORMS, vol. 14(4), pages 670-684, August.
    11. Linus Schrage, 1968. "Letter to the Editor—A Proof of the Optimality of the Shortest Remaining Processing Time Discipline," Operations Research, INFORMS, vol. 16(3), pages 687-690, June.
    12. Bachmat, Eitan, 2019. "Airplane boarding meets express line queues," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1165-1177.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Kittsteiner & Benny Moldovanu, 2005. "Priority Auctions and Queue Disciplines That Depend on Processing Time," Management Science, INFORMS, vol. 51(2), pages 236-248, February.
    2. Benjamin Legros & Sihan Ding & Rob Mei & Oualid Jouini, 2017. "Call centers with a postponed callback offer," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1097-1125, October.
    3. Mehmet Tolga Cezik & Pierre L'Ecuyer, 2008. "Staffing Multiskill Call Centers via Linear Programming and Simulation," Management Science, INFORMS, vol. 54(2), pages 310-323, February.
    4. Reynold E. Byers & Kut C. So, 2007. "Note--A Mathematical Model for Evaluating Cross-Sales Policies in Telephone Service Centers," Manufacturing & Service Operations Management, INFORMS, vol. 9(1), pages 1-8, January.
    5. Vyacheslav Abramov, 2006. "Analysis of multiserver retrial queueing system: A martingale approach and an algorithm of solution," Annals of Operations Research, Springer, vol. 141(1), pages 19-50, January.
    6. Mor Harchol-Balter, 2021. "Open problems in queueing theory inspired by datacenter computing," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 3-37, February.
    7. Merve Bodur & James R. Luedtke, 2017. "Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service-System Staffing and Scheduling with Arrival Rate Uncertainty," Management Science, INFORMS, vol. 63(7), pages 2073-2091, July.
    8. Yonatan Shadmi, 2022. "Fluid limits for shortest job first with aging," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 93-112, June.
    9. Douglas G. Down & H. Christian Gromoll & Amber L. Puha, 2009. "Fluid Limits for Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 880-911, November.
    10. Sunil Kumar & Ramandeep S. Randhawa, 2010. "Exploiting Market Size in Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 12(3), pages 511-526, September.
    11. B. Krishna Kumar & R. Sankar & R. Navaneetha Krishnan & R. Rukmani, 2022. "Performance Analysis of Multi-processor Two-Stage Tandem Call Center Retrial Queues with Non-Reliable Processors," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 95-142, March.
    12. Bernd Heidergott & Arie Hordijk & Nicole Leder, 2010. "Series Expansions for Continuous-Time Markov Processes," Operations Research, INFORMS, vol. 58(3), pages 756-767, June.
    13. Łukasz Kruk & Ewa Sokołowska, 2016. "Fluid Limits for Multiple-Input Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1055-1092, August.
    14. Athanassios N. Avramidis & Alexandre Deslauriers & Pierre L'Ecuyer, 2004. "Modeling Daily Arrivals to a Telephone Call Center," Management Science, INFORMS, vol. 50(7), pages 896-908, July.
    15. Sandjai Bhulai & Taoying Farenhorst-Yuan & Bernd Heidergott & Dinard Laan, 2012. "Optimal balanced control for call centers," Annals of Operations Research, Springer, vol. 201(1), pages 39-62, December.
    16. Suri Gurumurthi & Saif Benjaafar, 2004. "Modeling and analysis of flexible queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(5), pages 755-782, August.
    17. Elvin Coban & Aliza Heching & Alan Scheller‐Wolf, 2019. "Service Center Staffing with Cross‐Trained Agents and Heterogeneous Customers," Production and Operations Management, Production and Operations Management Society, vol. 28(4), pages 788-809, April.
    18. Predrag Jelenković & Xiaozhu Kang & Jian Tan, 2009. "Heavy-tailed limits for medium size jobs and comparison scheduling," Annals of Operations Research, Springer, vol. 170(1), pages 133-159, September.
    19. Barth, Wolfgang & Manitz, Michael & Stolletz, Raik, 2008. "Analysis of Two-Level Support Systems with Time-Dependent Overflow - A Banking Application," Hannover Economic Papers (HEP) dp-399, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    20. Avramidis, Athanassios N. & Chan, Wyean & Gendreau, Michel & L'Ecuyer, Pierre & Pisacane, Ornella, 2010. "Optimizing daily agent scheduling in a multiskill call center," European Journal of Operational Research, Elsevier, vol. 200(3), pages 822-832, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:322:y:2025:i:3:p:908-919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.