IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v309y2023i2p762-783.html
   My bibliography  Save this article

Moving from linear to conic markets for electricity

Author

Listed:
  • Ratha, Anubhav
  • Pinson, Pierre
  • Le Cadre, Hélène
  • Virag, Ana
  • Kazempour, Jalal

Abstract

We propose a new forward electricity market framework that admits heterogeneous market participants with second-order cone strategy sets, who accurately express the nonlinearities in their costs and constraints through conic bids, and a network operator facing conic operational constraints. In contrast to the prevalent linear-programming-based electricity markets, we highlight how the inclusion of second-order cone constraints improves uncertainty-, asset-, and network-awareness of the market, which is key to the successful transition towards an electricity system based on weather-dependent renewable energy sources. We analyze our general market-clearing proposal using conic duality theory to derive efficient spatially-differentiated prices for the multiple commodities, comprised of energy and flexibility services. Under the assumption of perfect competition, we prove the equivalence of the centrally-solved market-clearing optimization problem to a competitive spatial price equilibrium involving a set of rational and self-interested participants and a price setter. Finally, under common assumptions, we prove that moving towards conic markets does not incur the loss of desirable economic properties of markets, namely market efficiency, cost recovery, and revenue adequacy. Our numerical studies focus on the specific use case of uncertainty-aware market design and demonstrate that the proposed conic market brings advantages over existing alternatives within the linear programming market framework.

Suggested Citation

  • Ratha, Anubhav & Pinson, Pierre & Le Cadre, Hélène & Virag, Ana & Kazempour, Jalal, 2023. "Moving from linear to conic markets for electricity," European Journal of Operational Research, Elsevier, vol. 309(2), pages 762-783.
  • Handle: RePEc:eee:ejores:v:309:y:2023:i:2:p:762-783
    DOI: 10.1016/j.ejor.2022.12.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722009730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.12.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    2. Mitridati, Lesia & Kazempour, Jalal & Pinson, Pierre, 2020. "Heat and electricity market coordination: A scalable complementarity approach," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1107-1123.
    3. Matt Thompson, 2013. "Optimal Economic Dispatch and Risk Management of Thermal Power Plants in Deregulated Markets," Operations Research, INFORMS, vol. 61(4), pages 791-809, August.
    4. Nemirovski, Arkadi, 2012. "On safe tractable approximations of chance constraints," European Journal of Operational Research, Elsevier, vol. 219(3), pages 707-718.
    5. Krebs, Vanessa & Schewe, Lars & Schmidt, Martin, 2018. "Uniqueness and multiplicity of market equilibria on DC power flow networks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 165-178.
    6. Geoffrey Pritchard & Golbon Zakeri & Andrew Philpott, 2010. "A Single-Settlement, Energy-Only Electric Power Market for Unpredictable and Intermittent Participants," Operations Research, INFORMS, vol. 58(4-part-2), pages 1210-1219, August.
    7. Victor M. Zavala & Kibaek Kim & Mihai Anitescu & John Birge, 2017. "A Stochastic Electricity Market Clearing Formulation with Consistent Pricing Properties," Operations Research, INFORMS, vol. 65(3), pages 557-576, June.
    8. Roger E. Bohn & Michael C. Caramanis & Fred C. Schweppe, 1984. "Optimal Pricing in Electrical Networks over Space and Time," RAND Journal of Economics, The RAND Corporation, vol. 15(3), pages 360-376, Autumn.
    9. George Liberopoulos & Panagiotis Andrianesis, 2016. "Critical Review of Pricing Schemes in Markets with Non-Convex Costs," Operations Research, INFORMS, vol. 64(1), pages 17-31, February.
    10. DE WOLF, Daniel & SMEERS, Yves, 2000. "The gas transmission problem solved by an extension of the simplex algorithm," LIDAM Reprints CORE 1489, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Charles C. Holt & Franco Modigliani & Herbert A. Simon, 1955. "A Linear Decision Rule for Production and Employment Scheduling," Management Science, INFORMS, vol. 2(1), pages 1-30, October.
    12. Burak Kocuk & Santanu S. Dey & X. Andy Sun, 2016. "Strong SOCP Relaxations for the Optimal Power Flow Problem," Operations Research, INFORMS, vol. 64(6), pages 1177-1196, December.
    13. Kuang, Xiaolong & Lamadrid, Alberto J. & Zuluaga, Luis F., 2019. "Pricing in non-convex markets with quadratic deliverability costs," Energy Economics, Elsevier, vol. 80(C), pages 123-131.
    14. Jae Ho Kim & Warren B. Powell, 2011. "Optimal Energy Commitments with Storage and Intermittent Supply," Operations Research, INFORMS, vol. 59(6), pages 1347-1360, December.
    15. William Vickrey, 1961. "Counterspeculation, Auctions, And Competitive Sealed Tenders," Journal of Finance, American Finance Association, vol. 16(1), pages 8-37, March.
    16. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    17. Anthony Papavasiliou, 2018. "Analysis of distribution locational marginal prices," LIDAM Reprints CORE 3045, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Roberts, Donald John & Postlewaite, Andrew, 1976. "The Incentives for Price-Taking Behavior in Large Exchange Economies," Econometrica, Econometric Society, vol. 44(1), pages 115-127, January.
    19. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    20. Conrado Borraz-Sánchez & Russell Bent & Scott Backhaus & Hassan Hijazi & Pascal Van Hentenryck, 2016. "Convex Relaxations for Gas Expansion Planning," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 645-656, November.
    21. repec:inm:orijoo:v:3:y:2021:i:4:p:350-372 is not listed on IDEAS
    22. Ximing Cai & Daene C. McKinney & Leon S. Lasdon & David W. Watkins, 2001. "Solving Large Nonconvex Water Resources Management Models Using Generalized Benders Decomposition," Operations Research, INFORMS, vol. 49(2), pages 235-245, April.
    23. Daniel De Wolf & Yves Smeers, 2000. "The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm," Management Science, INFORMS, vol. 46(11), pages 1454-1465, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Shi & Alberto J. Lamadrid L. & Luis F. Zuluaga, 2021. "Revenue Adequate Prices for Chance-Constrained Electricity Markets with Variable Renewable Energy Sources," Papers 2105.01233, arXiv.org.
    2. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    3. Binning Fan & Longji Hu & Zhiguo Fan & Aifeng Liu & Lijun Yan & Fengjuan Xie & Zhenyu Liu, 2023. "Economic-emission–constrained multi-objective hybrid optimal energy flow of integrated energy systems," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 265-272.
    4. Zhang, Weiqi & Zavala, Victor M., 2022. "Remunerating space–time, load-shifting flexibility from data centers in electricity markets," Applied Energy, Elsevier, vol. 326(C).
    5. Belderbos, Andreas & Valkaert, Thomas & Bruninx, Kenneth & Delarue, Erik & D’haeseleer, William, 2020. "Facilitating renewables and power-to-gas via integrated electrical power-gas system scheduling," Applied Energy, Elsevier, vol. 275(C).
    6. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    7. Liu, Yongchao & Xu, Huifu & Yang, Shu-Jung Sunny & Zhang, Jin, 2018. "Distributionally robust equilibrium for continuous games: Nash and Stackelberg models," European Journal of Operational Research, Elsevier, vol. 265(2), pages 631-643.
    8. Philip A. Tominac & Victor M. Zavala, 2020. "Economic Properties of Multi-Product Supply Chains," Papers 2006.03467, arXiv.org, revised Jul 2020.
    9. Bobo, Lucien & Mitridati, Lesia & Taylor, Josh A. & Pinson, Pierre & Kazempour, Jalal, 2021. "Price-region bids in electricity markets," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1056-1073.
    10. Liu, Tianhao & Tian, Jun & Zhu, Hongyu & Goh, Hui Hwang & Liu, Hui & Wu, Thomas & Zhang, Dongdong, 2023. "Key technologies and developments of multi-energy system: Three-layer framework, modelling and optimisation," Energy, Elsevier, vol. 277(C).
    11. Ordoudis, Christos & Delikaraoglou, Stefanos & Kazempour, Jalal & Pinson, Pierre, 2020. "Market-based coordination of integrated electricity and natural gas systems under uncertain supply," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1105-1119.
    12. Mitridati, Lesia & Kazempour, Jalal & Pinson, Pierre, 2021. "Design and game-Theoretic analysis of community-Based market mechanisms in heat and electricity systems," Omega, Elsevier, vol. 99(C).
    13. Ralf Lenz & Kai Helge Becker, 2022. "Optimization of capacity expansion in potential-driven networks including multiple looping: a comparison of modelling approaches," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 179-224, March.
    14. Huang, Gang & Wang, Jianhui & Wang, Cheng & Guo, Chuangxin, 2021. "Cascading imbalance in coupled gas-electric energy systems," Energy, Elsevier, vol. 231(C).
    15. Jingkuan Han & Yingjun Xu & Dingzhi Liu & Yanfang Zhao & Zhongde Zhao & Shuhui Zhou & Tianhu Deng & Mengying Xue & Junchi Ye & Zuo-Jun Max Shen, 2019. "Operations Research Enables Better Planning of Natural Gas Pipelines," Interfaces, INFORMS, vol. 49(1), pages 23-39, January.
    16. Liu, Rong-Peng & Sun, Wei & Yin, Wenqian & Zhou, Dali & Hou, Yunhe, 2021. "Extended convex hull-based distributed optimal energy flow of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 287(C).
    17. Martin Schmidt & Denis Aßmann & Robert Burlacu & Jesco Humpola & Imke Joormann & Nikolaos Kanelakis & Thorsten Koch & Djamal Oucherif & Marc E. Pfetsch & Lars Schewe & Robert Schwarz & Mathias Sirvent, 2017. "GasLib—A Library of Gas Network Instances," Data, MDPI, vol. 2(4), pages 1-18, December.
    18. Beyza, Jesus & Ruiz-Paredes, Hector F. & Garcia-Paricio, Eduardo & Yusta, Jose M., 2020. "Assessing the criticality of interdependent power and gas systems using complex networks and load flow techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    19. Daniel de Wolf, 2017. "Mathematical Properties of Formulations of the Gas Transmission Problem," Post-Print halshs-02396747, HAL.
    20. Ordoudis, Christos & Pinson, Pierre & Morales, Juan M., 2019. "An Integrated Market for Electricity and Natural Gas Systems with Stochastic Power Producers," European Journal of Operational Research, Elsevier, vol. 272(2), pages 642-654.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:309:y:2023:i:2:p:762-783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.