IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v282y2020i3p858-872.html
   My bibliography  Save this article

Generalised accelerations for insertion-based heuristics in permutation flowshop scheduling

Author

Listed:
  • Fernandez-Viagas, Victor
  • Molina-Pariente, Jose M.
  • Framinan, Jose M.

Abstract

The scheduling literature is abundant on approximate methods for permutation flowshop scheduling, as this problem is NP-hard for the majority of objectives usually considered. Among these methods, some of the most efficient ones use an insertion-type of neighbourhood to construct high-quality solutions. It is not then surprising that using accelerations to speed up the computation of the objective function can greatly reduce the running time of these methods, since a good part of their computational effort is spent in the evaluation of the objective function. Undoubtedly, the best-known of these accelerations has been employed for makespan minimisation (commonly denoted as Taillard’s accelerations). These accelerations have been extended to other related problems, but they cannot be employed for the classical permutation flowshop problem if the objective is other than the makespan. In these cases, other types of accelerations have been proposed, but they are not able to achieve a substantial reduction of the computational effort.

Suggested Citation

  • Fernandez-Viagas, Victor & Molina-Pariente, Jose M. & Framinan, Jose M., 2020. "Generalised accelerations for insertion-based heuristics in permutation flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 282(3), pages 858-872.
  • Handle: RePEc:eee:ejores:v:282:y:2020:i:3:p:858-872
    DOI: 10.1016/j.ejor.2019.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719308525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.
    2. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    3. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 2006. "Some aspects of scatter search in the flow-shop problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 654-666, March.
    4. Ruiz, Ruben & Maroto, Concepcion, 2005. "A comprehensive review and evaluation of permutation flowshop heuristics," European Journal of Operational Research, Elsevier, vol. 165(2), pages 479-494, September.
    5. Li, Xiaoping & Wang, Qian & Wu, Cheng, 2009. "Efficient composite heuristics for total flowtime minimization in permutation flow shops," Omega, Elsevier, vol. 37(1), pages 155-164, February.
    6. Fanjul-Peyro, Luis & Ruiz, Rubén, 2010. "Iterated greedy local search methods for unrelated parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 207(1), pages 55-69, November.
    7. Lee J. Krajewski & Barry E. King & Larry P. Ritzman & Danny S. Wong, 1987. "Kanban, MRP, and Shaping the Manufacturing Environment," Management Science, INFORMS, vol. 33(1), pages 39-57, January.
    8. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 1998. "The flow shop with parallel machines: A tabu search approach," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 226-253, April.
    9. Robert H. Storer & S. David Wu & Renzo Vaccari, 1992. "New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling," Management Science, INFORMS, vol. 38(10), pages 1495-1509, October.
    10. Taillard, E., 1990. "Some efficient heuristic methods for the flow shop sequencing problem," European Journal of Operational Research, Elsevier, vol. 47(1), pages 65-74, July.
    11. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    12. Nowicki, Eugeniusz, 1999. "The permutation flow shop with buffers: A tabu search approach," European Journal of Operational Research, Elsevier, vol. 116(1), pages 205-219, July.
    13. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 1996. "A fast tabu search algorithm for the permutation flow-shop problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 160-175, May.
    14. Rios-Mercado, Roger Z. & Bard, Jonathan F., 1998. "Heuristics for the flow line problem with setup costs," European Journal of Operational Research, Elsevier, vol. 110(1), pages 76-98, October.
    15. Victor Fernandez-Viagas & Jose M. Framinan, 2015. "A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 53(4), pages 1111-1123, February.
    16. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
    17. J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yuhang & Han, Yuyan & Wang, Yuting & Tasgetiren, M. Fatih & Li, Junqing & Gao, Kaizhou, 2023. "Intelligent optimization under the makespan constraint: Rapid evaluation mechanisms based on the critical machine for the distributed flowshop group scheduling problem," European Journal of Operational Research, Elsevier, vol. 311(3), pages 816-832.
    2. Libralesso, Luc & Focke, Pablo Andres & Secardin, Aurélien & Jost, Vincent, 2022. "Iterative beam search algorithms for the permutation flowshop," European Journal of Operational Research, Elsevier, vol. 301(1), pages 217-234.
    3. Fernandez-Viagas, Victor & Talens, Carla & Framinan, Jose M., 2022. "Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 869-882.
    4. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pasdeloup, Bastien & Meyer, Patrick, 2023. "Learning to select operators in meta-heuristics: An integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1296-1330.
    5. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz, Rubén & Pan, Quan-Ke & Naderi, Bahman, 2019. "Iterated Greedy methods for the distributed permutation flowshop scheduling problem," Omega, Elsevier, vol. 83(C), pages 213-222.
    2. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
    3. Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.
    4. Kalczynski, Pawel J. & Kamburowski, Jerzy, 2009. "An empirical analysis of the optimality rate of flow shop heuristics," European Journal of Operational Research, Elsevier, vol. 198(1), pages 93-101, October.
    5. Fernando Luis Rossi & Marcelo Seido Nagano, 2022. "Beam search-based heuristics for the mixed no-idle flowshop with total flowtime criterion," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1311-1346, December.
    6. Libralesso, Luc & Focke, Pablo Andres & Secardin, Aurélien & Jost, Vincent, 2022. "Iterative beam search algorithms for the permutation flowshop," European Journal of Operational Research, Elsevier, vol. 301(1), pages 217-234.
    7. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
    8. Fernandez-Viagas, Victor & Talens, Carla & Framinan, Jose M., 2022. "Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 869-882.
    9. Naderi, Bahman & Ruiz, Rubén, 2014. "A scatter search algorithm for the distributed permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 323-334.
    10. Rad, Shahriar Farahmand & Ruiz, Rubén & Boroojerdian, Naser, 2009. "New high performing heuristics for minimizing makespan in permutation flowshops," Omega, Elsevier, vol. 37(2), pages 331-345, April.
    11. Smutnicki, Czeslaw & Pempera, Jaroslaw & Bocewicz, Grzegorz & Banaszak, Zbigniew, 2022. "Cyclic flow-shop scheduling with no-wait constraints and missing operations," European Journal of Operational Research, Elsevier, vol. 302(1), pages 39-49.
    12. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    13. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
    14. K Sheibani, 2010. "A fuzzy greedy heuristic for permutation flow-shop scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 813-818, May.
    15. Lobo, Fernando G. & Bazargani, Mosab & Burke, Edmund K., 2020. "A cutoff time strategy based on the coupon collector’s problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 101-114.
    16. Liu, Weibo & Jin, Yan & Price, Mark, 2017. "A new improved NEH heuristic for permutation flowshop scheduling problems," International Journal of Production Economics, Elsevier, vol. 193(C), pages 21-30.
    17. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    18. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
    19. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On the NEH heuristic for minimizing the makespan in permutation flow shops," Omega, Elsevier, vol. 35(1), pages 53-60, February.
    20. Pessoa, Luciana S. & Andrade, Carlos E., 2018. "Heuristics for a flowshop scheduling problem with stepwise job objective function," European Journal of Operational Research, Elsevier, vol. 266(3), pages 950-962.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:282:y:2020:i:3:p:858-872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.