IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v257y2017i3p773-776.html
   My bibliography  Save this article

Revisiting a class of liner fleet deployment models

Author

Listed:
  • Ng, ManWo

Abstract

A class of liner fleet deployment models in the literature is revisited. We point to an implicit (and unnecessary) assumption in this class of models that can lead to fleet deployment plans that employ more vessels than strictly necessary. New analytical results are derived to relax this assumption, leading to a new and more realistic liner fleet deployment model. In a case study, it is found that the new model can lead to a substantial reduction in the fleet deployment cost, up to 15 percent. Moreover, it is observed that the new model is particularly timely in the current era where vessel sharing agreements and mega vessels are the norm, as the cost savings grow with the vessel size.

Suggested Citation

  • Ng, ManWo, 2017. "Revisiting a class of liner fleet deployment models," European Journal of Operational Research, Elsevier, vol. 257(3), pages 773-776.
  • Handle: RePEc:eee:ejores:v:257:y:2017:i:3:p:773-776
    DOI: 10.1016/j.ejor.2016.07.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716305999
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.07.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shuaian, 2016. "Fundamental properties and pseudo-polynomial-time algorithm for network containership sailing speed optimization," European Journal of Operational Research, Elsevier, vol. 250(1), pages 46-55.
    2. Qiang Meng & Tingsong Wang, 2010. "A chance constrained programming model for short-term liner ship fleet planning problems," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(4), pages 329-346, July.
    3. Ng, ManWo, 2014. "Distribution-free vessel deployment for liner shipping," European Journal of Operational Research, Elsevier, vol. 238(3), pages 858-862.
    4. Mulder, Judith & Dekker, Rommert, 2014. "Methods for strategic liner shipping network design," European Journal of Operational Research, Elsevier, vol. 235(2), pages 367-377.
    5. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    6. Pantuso, Giovanni & Fagerholt, Kjetil & Hvattum, Lars Magnus, 2014. "A survey on maritime fleet size and mix problems," European Journal of Operational Research, Elsevier, vol. 235(2), pages 341-349.
    7. Meng, Qiang & Wang, Tingsong & Wang, Shuaian, 2012. "Short-term liner ship fleet planning with container transshipment and uncertain container shipment demand," European Journal of Operational Research, Elsevier, vol. 223(1), pages 96-105.
    8. Lin, Dung-Ying & Tsai, Yu-Yun, 2014. "The ship routing and freight assignment problem for daily frequency operation of maritime liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 52-70.
    9. Ng, ManWo, 2015. "Container vessel fleet deployment for liner shipping with stochastic dependencies in shipping demand," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 79-87.
    10. Wang, Tingsong & Meng, Qiang & Wang, Shuaian & Tan, Zhijia, 2013. "Risk management in liner ship fleet deployment: A joint chance constrained programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yadong & Meng, Qiang, 2021. "Optimizing freight rate of spot market containers with uncertainties in shipping demand and available ship capacity," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 314-332.
    2. Zhen, Lu & Wang, Kai & Wang, Shuaian & Qu, Xiaobo, 2018. "Tug scheduling for hinterland barge transport: A branch-and-price approach," European Journal of Operational Research, Elsevier, vol. 265(1), pages 119-132.
    3. Obstfeld, Maurice, 2021. "Two challenges from globalization," Journal of International Money and Finance, Elsevier, vol. 110(C).
    4. Wu, Lingxiao & Jia, Shuai & Wang, Shuaian, 2020. "Pilotage planning in seaports," European Journal of Operational Research, Elsevier, vol. 287(1), pages 90-105.
    5. Lai, Xiaofan & Wu, Lingxiao & Wang, Kai & Wang, Fan, 2022. "Robust ship fleet deployment with shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 169-196.
    6. Obstfeld, Maurice, 2021. "Reprint: Two challenges from globalization," Journal of International Money and Finance, Elsevier, vol. 114(C).
    7. Ng, ManWo & Lin, Dung-Ying, 2018. "Fleet deployment in liner shipping with incomplete demand information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 184-189.
    8. Wu, Lingxiao & Wang, Shuaian, 2020. "The shore power deployment problem for maritime transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    9. Jeong, Yoonjea & Saha, Subrata & Chatterjee, Debajyoti & Moon, Ilkyeong, 2018. "Direct shipping service routes with an empty container management strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 123-142.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ng, ManWo & Lin, Dung-Ying, 2018. "Fleet deployment in liner shipping with incomplete demand information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 184-189.
    2. Lai, Xiaofan & Wu, Lingxiao & Wang, Kai & Wang, Fan, 2022. "Robust ship fleet deployment with shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 169-196.
    3. Ng, ManWo, 2014. "Distribution-free vessel deployment for liner shipping," European Journal of Operational Research, Elsevier, vol. 238(3), pages 858-862.
    4. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
    5. E. Zhang & Feng Chu & Shijin Wang & Ming Liu & Yang Sui, 2022. "Approximation approach for robust vessel fleet deployment problem with ambiguous demands," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2180-2194, November.
    6. Ng, ManWo, 2015. "Container vessel fleet deployment for liner shipping with stochastic dependencies in shipping demand," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 79-87.
    7. E. Zhang & Feng Chu & Shijin Wang & Ming Liu & Yang Sui, 0. "Approximation approach for robust vessel fleet deployment problem with ambiguous demands," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-15.
    8. Zhao, Yue & Chen, Zhi & Lim, Andrew & Zhang, Zhenzhen, 2022. "Vessel deployment with limited information: Distributionally robust chance constrained models," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 197-217.
    9. Gang Du & Chuanwang Sun & Jinxian Weng, 2016. "Liner Shipping Fleet Deployment with Sustainable Collaborative Transportation," Sustainability, MDPI, vol. 8(2), pages 1-15, February.
    10. Lin, Dung-Ying & Chang, Yu-Ting, 2018. "Ship routing and freight assignment problem for liner shipping: Application to the Northern Sea Route planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 47-70.
    11. Wang, Yadong & Wang, Shuaian, 2021. "Deploying, scheduling, and sequencing heterogeneous vessels in a liner container shipping route," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    12. Mihaela Bukljaš & Kristijan Rogić & Vladimir Jerebić, 2022. "Distributionally Robust Model and Metaheuristic Frame for Liner Ships Fleet Deployment," Sustainability, MDPI, vol. 14(9), pages 1-18, May.
    13. Wang, Shuaian, 2016. "Fundamental properties and pseudo-polynomial-time algorithm for network containership sailing speed optimization," European Journal of Operational Research, Elsevier, vol. 250(1), pages 46-55.
    14. Ming Liu & Zhongzheng Liu & Rongfan Liu & Lihua Sun, 2022. "Distribution-Free Approaches for an Integrated Cargo Routing and Empty Container Repositioning Problem with Repacking Operations in Liner Shipping Networks," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    15. Arslan, Ayşe N. & Papageorgiou, Dimitri J., 2017. "Bulk ship fleet renewal and deployment under uncertainty: A multi-stage stochastic programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 69-96.
    16. Wang, Shuaian & Liu, Zhiyuan & Bell, Michael G.H., 2015. "Profit-based maritime container assignment models for liner shipping networks," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 59-76.
    17. Dung-Ying Lin & Chien-Chih Huang & ManWo Ng, 2017. "The coopetition game in international liner shipping," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(4), pages 474-495, May.
    18. Wu, Lingxiao & Pan, Kai & Wang, Shuaian & Yang, Dong, 2018. "Bulk ship scheduling in industrial shipping with stochastic backhaul canvassing demand," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 117-136.
    19. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    20. Wang, Shuaian, 2015. "Optimal sequence of container ships in a string," European Journal of Operational Research, Elsevier, vol. 246(3), pages 850-857.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:257:y:2017:i:3:p:773-776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.