IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v257y2017i2p625-640.html
   My bibliography  Save this article

Multi-vehicle synchronized arc routing problem to restore post-disaster network connectivity

Author

Listed:
  • Akbari, Vahid
  • Salman, F. Sibel

Abstract

After a natural disaster roads can be damaged or blocked by debris, while bridges and viaducts may collapse. This commonly observed hazard causes some road sections to be closed and may even disconnect the road network. In the immediate disaster response phase work teams are dispatched to open a subset of roads to reconnect the network. Closed roads are traversable only after they are unblocked/cleared by one of the teams. The main objective of this research is to provide an efficient solution method to generate a synchronized work schedule for the road clearing teams. The solution should specify the synchronized routes of each clearing team so that: 1) connectivity of the network is regained, and 2) none of the closed roads are traversed unless their unblocking/clearing procedure is finished. In this study we develop an exact Mixed Integer Programming (MIP) formulation to solve this problem. Furthermore, we propose a matheuristic that is based on an MIP-relaxation and a local search algorithm. We prove that the optimality gap of the relaxation solution is bounded by K times the lower bound obtained from the relaxed model, where K is the number of teams. We show computationally that the matheuristic obtains optimal or near-optimal solutions.

Suggested Citation

  • Akbari, Vahid & Salman, F. Sibel, 2017. "Multi-vehicle synchronized arc routing problem to restore post-disaster network connectivity," European Journal of Operational Research, Elsevier, vol. 257(2), pages 625-640.
  • Handle: RePEc:eee:ejores:v:257:y:2017:i:2:p:625-640
    DOI: 10.1016/j.ejor.2016.07.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716305987
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.07.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. A. Eiselt & Michel Gendreau & Gilbert Laporte, 1995. "Arc Routing Problems, Part II: The Rural Postman Problem," Operations Research, INFORMS, vol. 43(3), pages 399-414, June.
    2. Tuzun Aksu, Dilek & Ozdamar, Linet, 2014. "A mathematical model for post-disaster road restoration: Enabling accessibility and evacuation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 56-67.
    3. Özdamar, Linet & Tüzün Aksu, Dilek & Ergüneş, Biket, 2014. "Coordinating debris cleanup operations in post disaster road networks," Socio-Economic Planning Sciences, Elsevier, vol. 48(4), pages 249-262.
    4. Sohn, Jungyul, 2006. "Evaluating the significance of highway network links under the flood damage: An accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 491-506, July.
    5. H. A. Eiselt & Michel Gendreau & Gilbert Laporte, 1995. "Arc Routing Problems, Part I: The Chinese Postman Problem," Operations Research, INFORMS, vol. 43(2), pages 231-242, April.
    6. Alain Hertz & Gilbert Laporte & Pierrette Nanchen Hugo, 1999. "Improvement Procedures for the Undirected Rural Postman Problem," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 53-62, February.
    7. Sahin, Halenur & Kara, Bahar Yetis & Karasan, Oya Ekin, 2016. "Debris removal during disaster response: A case for Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 53(C), pages 49-59.
    8. Alain Hertz & Gilbert Laporte & Michel Mittaz, 2000. "A Tabu Search Heuristic for the Capacitated arc Routing Problem," Operations Research, INFORMS, vol. 48(1), pages 129-135, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara De Rosa & Gennaro Improta & Gianpaolo Ghiani & Roberto Musmanno, 2002. "The Arc Routing and Scheduling Problem with Transshipment," Transportation Science, INFORMS, vol. 36(3), pages 301-313, August.
    2. Fung, Richard Y.K. & Liu, Ran & Jiang, Zhibin, 2013. "A memetic algorithm for the open capacitated arc routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 53-67.
    3. Beullens, Patrick & Muyldermans, Luc & Cattrysse, Dirk & Van Oudheusden, Dirk, 2003. "A guided local search heuristic for the capacitated arc routing problem," European Journal of Operational Research, Elsevier, vol. 147(3), pages 629-643, June.
    4. Arbib, Claudio & Servilio, Mara & Archetti, Claudia & Speranza, M. Grazia, 2014. "The directed profitable location Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 811-819.
    5. Jesica Armas & Peter Keenan & Angel A. Juan & Seán McGarraghy, 2019. "Solving large-scale time capacitated arc routing problems: from real-time heuristics to metaheuristics," Annals of Operations Research, Springer, vol. 273(1), pages 135-162, February.
    6. Luc Muyldermans & Patrick Beullens & Dirk Cattrysse & Dirk Van Oudheusden, 2005. "Exploring Variants of 2-Opt and 3-Opt for the General Routing Problem," Operations Research, INFORMS, vol. 53(6), pages 982-995, December.
    7. Li, Jiliu & Qin, Hu & Shen, Huaxiao & Tsui, Kwok Leung, 2019. "The unilateral transportation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 1-29.
    8. Moreno, Alfredo & Alem, Douglas & Gendreau, Michel & Munari, Pedro, 2020. "The heterogeneous multicrew scheduling and routing problem in road restoration," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 24-58.
    9. Gilbert Laporte & Roberto Musmanno & Francesca Vocaturo, 2010. "An Adaptive Large Neighbourhood Search Heuristic for the Capacitated Arc-Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 44(1), pages 125-135, February.
    10. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    11. Tagmouti, Mariam & Gendreau, Michel & Potvin, Jean-Yves, 2007. "Arc routing problems with time-dependent service costs," European Journal of Operational Research, Elsevier, vol. 181(1), pages 30-39, August.
    12. Farzaneh, Mohammad Amin & Rezapour, Shabnam & Baghaian, Atefe & Amini, M. Hadi, 2023. "An integrative framework for coordination of damage assessment, road restoration, and relief distribution in disasters," Omega, Elsevier, vol. 115(C).
    13. Andie Pramudita & Eiichi Taniguchi, 2014. "Model of debris collection operation after disasters and its application in urban area," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 18(2), pages 218-243, July.
    14. Souza Almeida, Luana & Goerlandt, Floris & Pelot, Ronald, 2022. "Trends and gaps in the literature of road network repair and restoration in the context of disaster response operations," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    15. Kasaei, Maziar & Salman, F. Sibel, 2016. "Arc routing problems to restore connectivity of a road network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 177-206.
    16. Alain Hertz & Gilbert Laporte & Michel Mittaz, 2000. "A Tabu Search Heuristic for the Capacitated arc Routing Problem," Operations Research, INFORMS, vol. 48(1), pages 129-135, February.
    17. H-J Kim & Y-D Kim & D-H Lee, 2005. "Scheduling for an arc-welding robot considering heat-caused distortion," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(1), pages 39-50, January.
    18. Ajam, Meraj & Akbari, Vahid & Salman, F. Sibel, 2019. "Minimizing latency in post-disaster road clearance operations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1098-1112.
    19. Ghiani, Gianpaolo & Improta, Gennaro, 2000. "An efficient transformation of the generalized vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 122(1), pages 11-17, April.
    20. Angel Corberán & Gustavo Mejía & José M. Sanchis, 2005. "New Results on the Mixed General Routing Problem," Operations Research, INFORMS, vol. 53(2), pages 363-376, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:257:y:2017:i:2:p:625-640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.