IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v248y2016i2p691-702.html
   My bibliography  Save this article

Multiobjective optimization for aircraft conflict resolution. A metaheuristic approach

Author

Listed:
  • Alonso-Ayuso, Antonio
  • Escudero, Laureano F.
  • Martín-Campo, F. Javier

Abstract

The conflict resolution problem in Air Traffic Management is tackled in this paper by using a mixed integer linear approximation to a Mixed Integer Nonlinear Optimization (MINO) model that we have presented elsewhere. The aim of the problem consists of providing a new aircraft configuration such that every conflict situation is avoided, a conflict being an event in which two or more aircraft violate the minimum safety distance that they must keep in flight. The initial information consists of the aircraft configuration in a certain time instant: position, velocity, heading angle and flight level. The proposed approach allows the aircraft to perform any of the three possible maneuvers: velocity, turn angle and flight level changes. The nonlinear model involves trigonometric functions which make it difficult to solve, in addition to the integer variables related to flight level changes, among other auxiliary variables. A multicriteria scheme based on Goal Programming is also presented. In order to provide a good solution in short computing time, a Sequential Mixed Integer Linear Optimization (SMILO) approach is proposed. A comparison between the results obtained by using the state-of-the-art MINO solver Minotaur and SMILO is performed to assess the solution’s quality. Based on the computational results that we have obtained in a broad testbed we have experimented with, SMILO provides a very close solution to the one provided by Minotaur practically for all the instances. SMILO requires a very small computing time that makes the approach very suitable for helping to solve real-life operational situations.

Suggested Citation

  • Alonso-Ayuso, Antonio & Escudero, Laureano F. & Martín-Campo, F. Javier, 2016. "Multiobjective optimization for aircraft conflict resolution. A metaheuristic approach," European Journal of Operational Research, Elsevier, vol. 248(2), pages 691-702.
  • Handle: RePEc:eee:ejores:v:248:y:2016:i:2:p:691-702
    DOI: 10.1016/j.ejor.2015.07.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715007031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.07.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Charnes & W. W. Cooper & R. O. Ferguson, 1955. "Optimal Estimation of Executive Compensation by Linear Programming," Management Science, INFORMS, vol. 1(2), pages 138-151, January.
    2. A. Alonso-Ayuso & L. Escudero & F. Martín-Campo, 2014. "On modeling the air traffic control coordination in the collision avoidance problem by mixed integer linear optimization," Annals of Operations Research, Springer, vol. 222(1), pages 89-105, November.
    3. Scott Kolodziej & Pedro Castro & Ignacio Grossmann, 2013. "Global optimization of bilinear programs with a multiparametric disaggregation technique," Journal of Global Optimization, Springer, vol. 57(4), pages 1039-1063, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Sierra-Paradinas & Antonio Alonso-Ayuso & Francisco Javier Martín-Campo & Francisco Rodríguez-Calo & Enrique Lasso, 2020. "Facilities Delocation in the Retail Sector: A Mixed 0-1 Nonlinear Optimization Model and Its Linear Reformulation," Mathematics, MDPI, vol. 8(11), pages 1-19, November.
    2. Charis Ntakolia & Dimitrios V. Lyridis, 2022. "A n − D ant colony optimization with fuzzy logic for air traffic flow management," Operational Research, Springer, vol. 22(5), pages 5035-5053, November.
    3. Thibault Lehouillier & Moncef Ilies Nasri & François Soumis & Guy Desaulniers & Jérémy Omer, 2017. "Solving the Air Conflict Resolution Problem Under Uncertainty Using an Iterative Biobjective Mixed Integer Programming Approach," Transportation Science, INFORMS, vol. 51(4), pages 1242-1258, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wojtek Michalowski & Włodzimierz Ogryczak, 2001. "Extending the MAD portfolio optimization model to incorporate downside risk aversion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 185-200, April.
    2. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    3. Thomas L. Saaty, 2013. "The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach," Operations Research, INFORMS, vol. 61(5), pages 1101-1118, October.
    4. Linlin Chen & Shuihua Han & Chaokan Du & Zongwei Luo, 2022. "A real-time integrated optimization of the aircraft holding time and rerouting under risk area," Annals of Operations Research, Springer, vol. 310(1), pages 7-26, March.
    5. Yanagida, John F. & Book, Don N., 1984. "Application of the Least Absolute Value Technique as a Data Filter for Detecting Structural Change in the Demand for Meat," Northeastern Journal of Agricultural and Resource Economics, Northeastern Agricultural and Resource Economics Association, vol. 0(Number 1), pages 1-5, April.
    6. Dima, Bogdan & Dincă, Marius Sorin & Spulbăr, Cristi, 2014. "Financial nexus: Efficiency and soundness in banking and capital markets," Journal of International Money and Finance, Elsevier, vol. 47(C), pages 100-124.
    7. Hamalainen, Raimo P. & Mantysaari, Juha, 2002. "Dynamic multi-objective heating optimization," European Journal of Operational Research, Elsevier, vol. 142(1), pages 1-15, October.
    8. Tsoukias, Alexis, 2008. "From decision theory to decision aiding methodology," European Journal of Operational Research, Elsevier, vol. 187(1), pages 138-161, May.
    9. Unai Aldasoro & María Merino & Gloria Pérez, 2019. "Time consistent expected mean-variance in multistage stochastic quadratic optimization: a model and a matheuristic," Annals of Operations Research, Springer, vol. 280(1), pages 151-187, September.
    10. Richard W. Cottle, 2017. "On “Pre-historic” Linear Programming and the Figure of the Earth," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 255-277, October.
    11. W. Cooper & C. Lovell, 2011. "History lessons," Journal of Productivity Analysis, Springer, vol. 36(2), pages 193-200, October.
    12. Demirci, Mehmet & Bettinger, Pete, 2015. "Using mixed integer multi-objective goal programming for stand tending block designation: A case study from Turkey," Forest Policy and Economics, Elsevier, vol. 55(C), pages 28-36.
    13. Tsai, Wen-Hsien & Hsu, Jui-Ling, 2008. "Corporate social responsibility programs choice and costs assessment in the airline industry—A hybrid model," Journal of Air Transport Management, Elsevier, vol. 14(4), pages 188-196.
    14. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    15. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    16. Hanks, Robert W. & Weir, Jeffery D. & Lunday, Brian J., 2017. "Robust goal programming using different robustness echelons via norm-based and ellipsoidal uncertainty sets," European Journal of Operational Research, Elsevier, vol. 262(2), pages 636-646.
    17. Grigoroudis, Evangelos & Noel, Laurent & Galariotis, Emilios & Zopounidis, Constantin, 2021. "An ordinal regression approach for analyzing consumer preferences in the art market," European Journal of Operational Research, Elsevier, vol. 290(2), pages 718-733.
    18. J González-Pachón & C Romero, 2006. "An analytical framework for aggregating multiattribute utility functions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1241-1247, October.
    19. Kilpatrick, Henry E., Jr., 1998. "Some useful methods for measuring the benefits of social science research," Impact assessments 5, International Food Policy Research Institute (IFPRI).
    20. Pedro Castro & Ignacio Grossmann, 2014. "Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems," Journal of Global Optimization, Springer, vol. 59(2), pages 277-306, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:248:y:2016:i:2:p:691-702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.