IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v227y2013i2p275-283.html
   My bibliography  Save this article

Applications of the vehicle routing problem with trailers and transshipments

Author

Listed:
  • Drexl, Michael

Abstract

The vehicle routing problem with trailers and transshipments (VRPTT) is a recent and challenging extension of the well-known vehicle routing problem. The VRPTT constitutes an archetypal representative of the class of vehicle routing problems with multiple synchronization constraints (VRPMSs). In addition to the usual task covering constraints, VRPMSs require further synchronization between vehicles, concerning spatial, temporal, and load aspects. VRPMSs possess considerable practical relevance, but limited coverage in the scientific literature. The purpose of the present paper is to describe how several important types of VRPMSs, such as multi-echelon location-routing problems and simultaneous vehicle and crew routing problems, can be modelled as VRPTTs.

Suggested Citation

  • Drexl, Michael, 2013. "Applications of the vehicle routing problem with trailers and transshipments," European Journal of Operational Research, Elsevier, vol. 227(2), pages 275-283.
  • Handle: RePEc:eee:ejores:v:227:y:2013:i:2:p:275-283
    DOI: 10.1016/j.ejor.2012.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712009460
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Louis-Martin Rousseau & Michel Gendreau & Gilles Pesant & Filippo Focacci, 2004. "Solving VRPTWs with Constraint Programming Based Column Generation," Annals of Operations Research, Springer, vol. 130(1), pages 199-216, August.
    2. R Baldacci & E Bartolini & G Laporte, 2010. "Some applications of the generalized vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(7), pages 1072-1077, July.
    3. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    4. Teodor Gabriel Crainic & Nicoletta Ricciardi & Giovanni Storchi, 2009. "Models for Evaluating and Planning City Logistics Systems," Transportation Science, INFORMS, vol. 43(4), pages 432-454, November.
    5. Liu, Ran & Jiang, Zhibin, 2012. "The close–open mixed vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 349-360.
    6. Rasmussen, Matias Sevel & Justesen, Tor & Dohn, Anders & Larsen, Jesper, 2012. "The Home Care Crew Scheduling Problem: Preference-based visit clustering and temporal dependencies," European Journal of Operational Research, Elsevier, vol. 219(3), pages 598-610.
    7. M Caramia & F Guerriero, 2010. "A heuristic approach for the truck and trailer routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(7), pages 1168-1180, July.
    8. Jesus Gonzalez-Feliu, 2009. "The N-echelon Location routing problem: concepts and methods for tactical and operational planning," Working Papers halshs-00422492, HAL.
    9. Chris Groër & Bruce Golden & Edward Wasil, 2009. "The Consistent Vehicle Routing Problem," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 630-643, February.
    10. Guido Perboli & Roberto Tadei & Daniele Vigo, 2011. "The Two-Echelon Capacitated Vehicle Routing Problem: Models and Math-Based Heuristics," Transportation Science, INFORMS, vol. 45(3), pages 364-380, August.
    11. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    12. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2010. "An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles," European Journal of Operational Research, Elsevier, vol. 202(3), pages 756-763, May.
    13. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    14. Cortés, Cristián E. & Matamala, Martín & Contardo, Claudio, 2010. "The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method," European Journal of Operational Research, Elsevier, vol. 200(3), pages 711-724, February.
    15. Hemmelmayr, Vera C. & Doerner, Karl F. & Hartl, Richard F., 2009. "A variable neighborhood search heuristic for periodic routing problems," European Journal of Operational Research, Elsevier, vol. 195(3), pages 791-802, June.
    16. Claudia Bode & Stefan Irnich, 2012. "Cut-First Branch-and-Price-Second for the Capacitated Arc-Routing Problem," Operations Research, INFORMS, vol. 60(5), pages 1167-1182, October.
    17. Dondo, Rodolfo & Cerda, Jaime, 2007. "A cluster-based optimization approach for the multi-depot heterogeneous fleet vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1478-1507, February.
    18. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    19. Hollis, B.L. & Forbes, M.A. & Douglas, B.E., 2006. "Vehicle routing and crew scheduling for metropolitan mail distribution at Australia Post," European Journal of Operational Research, Elsevier, vol. 173(1), pages 133-150, August.
    20. Macedo, Rita & Alves, Cláudio & Valério de Carvalho, J.M. & Clautiaux, François & Hanafi, Saïd, 2011. "Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model," European Journal of Operational Research, Elsevier, vol. 214(3), pages 536-545, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward Lam & Pascal Van Hentenryck & Phil Kilby, 2020. "Joint Vehicle and Crew Routing and Scheduling," Transportation Science, INFORMS, vol. 54(2), pages 488-511, March.
    2. Li, Hongqi & Chang, Xinyu & Zhao, Wencong & Lu, Yingrong, 2017. "The vehicle flow formulation and savings-based algorithm for the rollon-rolloff vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 257(3), pages 859-869.
    3. Rais, A. & Alvelos, F. & Carvalho, M.S., 2014. "New mixed integer-programming model for the pickup-and-delivery problem with transshipment," European Journal of Operational Research, Elsevier, vol. 235(3), pages 530-539.
    4. Juan José Miranda-Bront & Brian Curcio & Isabel Méndez-Díaz & Agustín Montero & Federico Pousa & Paula Zabala, 2017. "A cluster-first route-second approach for the swap body vehicle routing problem," Annals of Operations Research, Springer, vol. 253(2), pages 935-956, June.
    5. Gandra, Vinícius S.M. & Çalık, Hatice & Toffolo, Túlio A.M. & Carvalho, Marco Antonio M. & Vanden Berghe, Greet, 2022. "The vessel swap-body routing problem," European Journal of Operational Research, Elsevier, vol. 303(1), pages 354-369.
    6. Aziez, Imadeddine & Côté, Jean-François & Coelho, Leandro C., 2022. "Fleet sizing and routing of healthcare automated guided vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    7. You, Jintao & Miao, Lixin & Zhang, Canrong & Xue, Zhaojie, 2020. "A generic model for the local container drayage problem using the emerging truck platooning operation mode," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 181-209.
    8. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.
    9. Huber, Sandra & Geiger, Martin Josef, 2017. "Order matters – A Variable Neighborhood Search for the Swap-Body Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 263(2), pages 419-445.
    10. Li, Hongqi & Zhang, Lu & Lv, Tan & Chang, Xinyu, 2016. "The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 169-188.
    11. Sartori, Carlo S. & Smet, Pieter & Vanden Berghe, Greet, 2022. "Scheduling truck drivers with interdependent routes under European Union regulations," European Journal of Operational Research, Elsevier, vol. 298(1), pages 76-88.
    12. Christian Tilk & Nicola Bianchessi & Michael Drexl & Stefan Irnich & Frank Meisel, 2018. "Branch-and-Price-and-Cut for the Active-Passive Vehicle-Routing Problem," Transportation Science, INFORMS, vol. 52(2), pages 300-319, March.
    13. Fu, Zhexi & Chow, Joseph Y.J., 2022. "The pickup and delivery problem with synchronized en-route transfers for microtransit planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    14. Neves-Moreira, F. & Amorim, P. & Guimarães, L. & Almada-Lobo, B., 2016. "A long-haul freight transportation problem: Synchronizing resources to deliver requests passing through multiple transshipment locations," European Journal of Operational Research, Elsevier, vol. 248(2), pages 487-506.
    15. Simona Mancini, 2013. "Multi-echelon distribution systems in city logistics," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 54, pages 1-2.
    16. Charlotte Vilhelmsen & Richard M. Lusby & Jesper Larsen, 2017. "Tramp ship routing and scheduling with voyage separation requirements," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 913-943, October.
    17. Michael Drexl, 2014. "A Generic Heuristic for Vehicle Routing Problems with Multiple Synchronization Constraints," Working Papers 1412, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 04 Nov 2014.
    18. Ji, Bin & Zhang, Zheng & Yu, Samson S. & Zhou, Saiqi & Wu, Guohua, 2023. "Modelling and heuristically solving many-to-many heterogeneous vehicle routing problem with cross-docking and two-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1219-1235.
    19. Christian Tilk & Nicola Bianchessi & Michael Drexl & Stefan Irnich & Frank Meisel, 2015. "Branch-and-Price for the Active-Passive Vehicle-Routing Problem," Working Papers 1513, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    20. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    21. Christian Tilk & Michael Forbes, 2019. "Branch-and-Cut for the Active-Passive Vehicle Routing Problem," Working Papers 1915, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    22. Mahmoudi, Monirehalsadat & Chen, Junhua & Shi, Tie & Zhang, Yongxiang & Zhou, Xuesong, 2019. "A cumulative service state representation for the pickup and delivery problem with transfers," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 351-380.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    2. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    3. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    4. Campelo, Pedro & Neves-Moreira, Fábio & Amorim, Pedro & Almada-Lobo, Bernardo, 2019. "Consistent vehicle routing problem with service level agreements: A case study in the pharmaceutical distribution sector," European Journal of Operational Research, Elsevier, vol. 273(1), pages 131-145.
    5. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    6. Diego Cattaruzza & Nabil Absi & Dominique Feillet & Jesús González-Feliu, 2017. "Vehicle routing problems for city logistics," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 51-79, March.
    7. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    8. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    9. Tu, Wei & Fang, Zhixiang & Li, Qingquan & Shaw, Shih-Lung & Chen, BiYu, 2014. "A bi-level Voronoi diagram-based metaheuristic for a large-scale multi-depot vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 84-97.
    10. Michael Drexl, 2012. "Branch-and-Cut Algorithms for the Vehicle Routing Problem with Trailers and Transshipments," Working Papers 1210, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    11. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    12. Li, Hongqi & Zhang, Lu & Lv, Tan & Chang, Xinyu, 2016. "The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 169-188.
    13. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    14. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    15. Liu, Dan & Yan, Pengyu & Pu, Ziyuan & Wang, Yinhai & Kaisar, Evangelos I., 2021. "Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    16. Juliette Medina & Mike Hewitt & Fabien Lehuédé & Olivier Péton, 2019. "Integrating long-haul and local transportation planning: the Service Network Design and Routing Problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 119-145, June.
    17. Mads Jepsen & Simon Spoorendonk & Stefan Ropke, 2013. "A Branch-and-Cut Algorithm for the Symmetric Two-Echelon Capacitated Vehicle Routing Problem," Transportation Science, INFORMS, vol. 47(1), pages 23-37, February.
    18. Frey, Christian M.M. & Jungwirth, Alexander & Frey, Markus & Kolisch, Rainer, 2023. "The vehicle routing problem with time windows and flexible delivery locations," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1142-1159.
    19. Bo Sun & Ming Wei & Senlai Zhu, 2018. "Optimal Design of Demand-Responsive Feeder Transit Services with Passengers’ Multiple Time Windows and Satisfaction," Future Internet, MDPI, vol. 10(3), pages 1-15, March.
    20. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:227:y:2013:i:2:p:275-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.