IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v227y2013i2p239-253.html
   My bibliography  Save this article

Multiple-objective heuristics for scheduling unrelated parallel machines

Author

Listed:
  • Lin, Yang-Kuei
  • Fowler, John W.
  • Pfund, Michele E.

Abstract

This research proposes two heuristics and a Genetic Algorithm (GA) to find non-dominated solutions to multiple-objective unrelated parallel machine scheduling problems. Three criteria are of interest, namely: makespan, total weighted completion time, and total weighted tardiness. Each heuristic seeks to simultaneously minimize a pair of these criteria; the GA seeks to simultaneously minimize all three. The computational results show that the proposed heuristics are computationally efficient and provide solutions of reasonable quality. The proposed GA outperforms other algorithms in terms of the number of non-dominated solutions and the quality of its solutions.

Suggested Citation

  • Lin, Yang-Kuei & Fowler, John W. & Pfund, Michele E., 2013. "Multiple-objective heuristics for scheduling unrelated parallel machines," European Journal of Operational Research, Elsevier, vol. 227(2), pages 239-253.
  • Handle: RePEc:eee:ejores:v:227:y:2013:i:2:p:239-253
    DOI: 10.1016/j.ejor.2012.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712007357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ari P. J. Vepsalainen & Thomas E. Morton, 1987. "Priority Rules for Job Shops with Weighted Tardiness Costs," Management Science, INFORMS, vol. 33(8), pages 1035-1047, August.
    2. Jenny Chen & Michele Pfund & John Fowler & Douglas Montgomery & Thomas Callarman, 2010. "Robust scaling parameters for composite dispatching rules," IISE Transactions, Taylor & Francis Journals, vol. 42(11), pages 842-853.
    3. J N D Gupta & J C Ho & S Webster, 2000. "Bicriteria optimisation of the makespan and mean flowtime on two identical parallel machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(11), pages 1330-1339, November.
    4. Gupta, J.N.D. & Ruiz-Torres, Alex J., 2005. "Generating efficient schedules for identical parallel machines involving flow-time and tardy jobs," European Journal of Operational Research, Elsevier, vol. 167(3), pages 679-695, December.
    5. Gupta, Jatinder N. D. & Ruiz-Torres, Alex J., 2000. "Minimizing makespan subject to minimum total flow-time on identical parallel machines," European Journal of Operational Research, Elsevier, vol. 125(2), pages 370-380, September.
    6. Brian Thomas Eck & Michael Pinedo, 1993. "On the Minimization of the Makespan Subject to Flowtime Optimality," Operations Research, INFORMS, vol. 41(4), pages 797-801, August.
    7. Loukil, T. & Teghem, J. & Tuyttens, D., 2005. "Solving multi-objective production scheduling problems using metaheuristics," European Journal of Operational Research, Elsevier, vol. 161(1), pages 42-61, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan, Long & Ding, Zhihao & Li, Yunpeng & Chen, Qianqian & Tan, Zhiyi, 2015. "Scheduling to minimize the maximum total completion time per machine," European Journal of Operational Research, Elsevier, vol. 242(1), pages 45-50.
    2. Julio Mar-Ortiz & Alex J. Ruiz Torres & Belarmino Adenso-Díaz, 2022. "Scheduling in parallel machines with two objectives: analysis of factors that influence the Pareto frontier," Operational Research, Springer, vol. 22(4), pages 4585-4605, September.
    3. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    4. Zhang, Zhe & Song, Xiaoling & Huang, Huijung & Zhou, Xiaoyang & Yin, Yong, 2022. "Logic-based Benders decomposition method for the seru scheduling problem with sequence-dependent setup time and DeJong’s learning effect," European Journal of Operational Research, Elsevier, vol. 297(3), pages 866-877.
    5. Mecler, Davi & Abu-Marrul, Victor & Martinelli, Rafael & Hoff, Arild, 2022. "Iterated greedy algorithms for a complex parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 545-560.
    6. Huiqiao Su & Michael Pinedo & Guohua Wan, 2017. "Parallel machine scheduling with eligibility constraints: A composite dispatching rule to minimize total weighted tardiness," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 249-267, April.
    7. Yang-Kuei Lin & Yin-Yi Chou, 2020. "A hybrid genetic algorithm for operating room scheduling," Health Care Management Science, Springer, vol. 23(2), pages 249-263, June.
    8. Yang-Kuei Lin & Tzu-Yueh Yin, 2022. "Generating bicriteria schedules for correlated parallel machines involving tardy jobs and weighted completion time," Annals of Operations Research, Springer, vol. 319(2), pages 1655-1688, December.
    9. Azadian, Farshid & Murat, Alper & Chinnam, Ratna Babu, 2015. "Integrated production and logistics planning: Contract manufacturing and choice of air/surface transportation," European Journal of Operational Research, Elsevier, vol. 247(1), pages 113-123.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Fubin & Strusevich, Vitaly & Gribkovskaia, Irina & Halskau, Øyvind, 2015. "Minimization of passenger takeoff and landing risk in offshore helicopter transportation: Models, approaches and analysis," Omega, Elsevier, vol. 51(C), pages 93-106.
    2. Yang-Kuei Lin & Tzu-Yueh Yin, 2022. "Generating bicriteria schedules for correlated parallel machines involving tardy jobs and weighted completion time," Annals of Operations Research, Springer, vol. 319(2), pages 1655-1688, December.
    3. Huiqiao Su & Michael Pinedo & Guohua Wan, 2017. "Parallel machine scheduling with eligibility constraints: A composite dispatching rule to minimize total weighted tardiness," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 249-267, April.
    4. Jiang, Xiaojuan & Lee, Kangbok & Pinedo, Michael L., 2023. "Approximation algorithms for bicriteria scheduling problems on identical parallel machines for makespan and total completion time," European Journal of Operational Research, Elsevier, vol. 305(2), pages 594-607.
    5. J Jackman & Z Guerra de Castillo & S Olafsson, 2011. "Stochastic flow shop scheduling model for the Panama Canal," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 69-80, January.
    6. Alidaee, Bahram & Kochenberger, Gary A. & Amini, Mohammad M., 2001. "Greedy solutions of selection and ordering problems," European Journal of Operational Research, Elsevier, vol. 134(1), pages 203-215, October.
    7. S. David Wu & Eui-Seok Byeon & Robert H. Storer, 1999. "A Graph-Theoretic Decomposition of the Job Shop Scheduling Problem to Achieve Scheduling Robustness," Operations Research, INFORMS, vol. 47(1), pages 113-124, February.
    8. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    9. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    10. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.
    11. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
    12. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
    13. M. Vimala Rani & M. Mathirajan, 2020. "Performance evaluation of due-date based dispatching rules in dynamic scheduling of diffusion furnace," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 462-512, June.
    14. Huo, Yumei & Zhao, Hairong, 2015. "Total completion time minimization on multiple machines subject to machine availability and makespan constraints," European Journal of Operational Research, Elsevier, vol. 243(2), pages 547-554.
    15. Maria Anna Huka & Christian Rindler & Manfred Gronalt, 2021. "Scheduling and loading problem for multiple, identical dry kilns," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 312-336, June.
    16. Mattfeld, Dirk C. & Bierwirth, Christian, 2004. "An efficient genetic algorithm for job shop scheduling with tardiness objectives," European Journal of Operational Research, Elsevier, vol. 155(3), pages 616-630, June.
    17. Balasubramanian, Hari & Fowler, John & Keha, Ahmet & Pfund, Michele, 2009. "Scheduling interfering job sets on parallel machines," European Journal of Operational Research, Elsevier, vol. 199(1), pages 55-67, November.
    18. Valente, Jorge M.S., 2007. "Improving the performance of the ATC dispatch rule by using workload data to determine the lookahead parameter value," International Journal of Production Economics, Elsevier, vol. 106(2), pages 563-573, April.
    19. Niu, Qun & Zhou, Taijin & Fei, Minrui & Wang, Bing, 2012. "An efficient quantum immune algorithm to minimize mean flow time for hybrid flow shop problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 1-25.
    20. A. R. Rahimi-Vahed & S. M. Mirghorbani, 2007. "A multi-objective particle swarm for a flow shop scheduling problem," Journal of Combinatorial Optimization, Springer, vol. 13(1), pages 79-102, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:227:y:2013:i:2:p:239-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.