IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Selecting rows and columns for training support vector regression models with large retail datasets

Listed author(s):
  • Gür Ali, Özden
  • Yaman, Kübra
Registered author(s):

    Although support vector regression models are being used successfully in various applications, the size of the business datasets with millions of observations and thousands of variables makes training them difficult, if not impossible to solve. This paper introduces the Row and Column Selection Algorithm (ROCSA) to select a small but informative dataset for training support vector regression models with standard SVM tools. ROCSA uses ε-SVR models with L1-norm regularization of the dual and primal variables for the row and column selection steps, respectively. The first step involves parallel processing of data chunks and selects a fraction of the original observations that are either representative of the pattern identified in the chunk, or represent those observations that do not fit the identified pattern. The column selection step dramatically reduces the number of variables and the multicolinearity in the dataset, increasing the interpretability of the resulting models and their ease of maintenance. Evaluated on six retail datasets from two countries and a publicly available research dataset, the reduced ROCSA training data improves the predictive accuracy on average by 39% compared with the original dataset when trained with standard SVM tools. Comparison with the ε SSVR method using reduced kernel technique shows similar performance improvement. Training a standard SVM tool with the ROCSA selected observations improves the predictive accuracy on average by 21% compared to the practical approach of random sampling.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 226 (2013)
    Issue (Month): 3 ()
    Pages: 471-480

    in new window

    Handle: RePEc:eee:ejores:v:226:y:2013:i:3:p:471-480
    DOI: 10.1016/j.ejor.2012.11.013
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Wu, Shaomin & Akbarov, Artur, 2011. "Support vector regression for warranty claim forecasting," European Journal of Operational Research, Elsevier, vol. 213(1), pages 196-204, August.
    2. Carbonneau, Real & Laframboise, Kevin & Vahidov, Rustam, 2008. "Application of machine learning techniques for supply chain demand forecasting," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1140-1154, February.
    3. Lu, Chi-Jie & Wang, Yen-Wen, 2010. "Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting," International Journal of Production Economics, Elsevier, vol. 128(2), pages 603-613, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:226:y:2013:i:3:p:471-480. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.