IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A methodology for probabilistic model-based prognosis

Listed author(s):
  • Lorton, A.
  • Fouladirad, M.
  • Grall, A.
Registered author(s):

    This paper deals with the prognosis of complex systems using stochastic model-based techniques. Prognosis consists in this case in computing the distribution of the Remaining Useful Life (RUL) of the system conditionally to available information. In so doing, three main challenges arise from the industrial context. First, the model should unify the two classical approaches to describing complex systems: the bottom-up and the top-down approaches. The former uses elementary interacting components whilst the latter models the system’s physical behavior by means of a set of differential equations. Second, the prognosis must integrate online information to provide a specific result for each system depending on their life events. Online information can take different forms (e.g. inspections, component faults, non detection or false alarm, noisy signal) which must all be considered. Third, the prognosis must supply ready, meaningful numerical results, the error of which must also be under control. This paper proposes a method addressing those challenges. The method is illustrated with two different examples: a simplified spring-mass system and a pneumatic valve for aeronautical application.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 225 (2013)
    Issue (Month): 3 ()
    Pages: 443-454

    in new window

    Handle: RePEc:eee:ejores:v:225:y:2013:i:3:p:443-454
    DOI: 10.1016/j.ejor.2012.10.025
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Dong, Ming & He, David, 2007. "Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis," European Journal of Operational Research, Elsevier, vol. 178(3), pages 858-878, May.
    2. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    3. Dieulle, L. & Berenguer, C. & Grall, A. & Roussignol, M., 2003. "Sequential condition-based maintenance scheduling for a deteriorating system," European Journal of Operational Research, Elsevier, vol. 150(2), pages 451-461, October.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:225:y:2013:i:3:p:443-454. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.