IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v223y2012i1p123-132.html
   My bibliography  Save this article

A two-class discrete-time queueing model with two dedicated servers and global FCFS service discipline

Author

Listed:
  • Bruneel, Herwig
  • Mélange, Willem
  • Steyaert, Bart
  • Claeys, Dieter
  • Walraevens, Joris

Abstract

This paper considers a simple discrete-time queueing model with two types (classes) of customers (types 1 and 2) each having their own dedicated server (servers A and B resp.). New customers enter the system according to a general independent arrival process, i.e., the total numbers of arrivals during consecutive time slots are i.i.d. random variables with arbitrary distribution. Service times are deterministically equal to 1 slot each. The system uses a “global FCFS” service discipline, i.e., all arriving customers are accommodated in one single FCFS queue, regardless of their types. As a consequence of the “global FCFS” rule, customers of one type may be blocked by customers of the other type, in that they may be unable to reach their dedicated server even at times when this server is idle, i.e., the system is basically non-workconserving. One major aim of the paper is to estimate the negative impact of this phenomenon on the queueing performance of the system, in terms of the achievable throughput, the system occupancy, the idle probability of each server and the delay. As it is clear that customers of different types hinder each other more as they tend to arrive in the system more clustered according to class, the degree of “class clustering” in the arrival process is explicitly modeled in the paper and its very direct impact on the performance measures is revealed. The motivation of our work are systems where this kind of blocking is encountered, such as input-queueing network switches or road splits.

Suggested Citation

  • Bruneel, Herwig & Mélange, Willem & Steyaert, Bart & Claeys, Dieter & Walraevens, Joris, 2012. "A two-class discrete-time queueing model with two dedicated servers and global FCFS service discipline," European Journal of Operational Research, Elsevier, vol. 223(1), pages 123-132.
  • Handle: RePEc:eee:ejores:v:223:y:2012:i:1:p:123-132
    DOI: 10.1016/j.ejor.2012.06.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712004869
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maertens, Tom & Walraevens, Joris & Bruneel, Herwig, 2007. "A modified HOL priority scheduling discipline: Performance analysis," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1168-1185, August.
    2. Avishai Mandelbaum & Martin I. Reiman, 1998. "On Pooling in Queueing Networks," Management Science, INFORMS, vol. 44(7), pages 971-981, July.
    3. Laevens, Koenraad & Bruneel, Herwig, 1995. "Delay analysis for discrete-time queueing systems with multiple randomly interrupted servers," European Journal of Operational Research, Elsevier, vol. 85(1), pages 161-177, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:topjnl:v:25:y:2017:i:1:d:10.1007_s11750-016-0427-y is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:1:p:123-132. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.