IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A two-class discrete-time queueing model with two dedicated servers and global FCFS service discipline

Listed author(s):
  • Bruneel, Herwig
  • Mélange, Willem
  • Steyaert, Bart
  • Claeys, Dieter
  • Walraevens, Joris
Registered author(s):

    This paper considers a simple discrete-time queueing model with two types (classes) of customers (types 1 and 2) each having their own dedicated server (servers A and B resp.). New customers enter the system according to a general independent arrival process, i.e., the total numbers of arrivals during consecutive time slots are i.i.d. random variables with arbitrary distribution. Service times are deterministically equal to 1 slot each. The system uses a “global FCFS” service discipline, i.e., all arriving customers are accommodated in one single FCFS queue, regardless of their types. As a consequence of the “global FCFS” rule, customers of one type may be blocked by customers of the other type, in that they may be unable to reach their dedicated server even at times when this server is idle, i.e., the system is basically non-workconserving. One major aim of the paper is to estimate the negative impact of this phenomenon on the queueing performance of the system, in terms of the achievable throughput, the system occupancy, the idle probability of each server and the delay. As it is clear that customers of different types hinder each other more as they tend to arrive in the system more clustered according to class, the degree of “class clustering” in the arrival process is explicitly modeled in the paper and its very direct impact on the performance measures is revealed. The motivation of our work are systems where this kind of blocking is encountered, such as input-queueing network switches or road splits.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 223 (2012)
    Issue (Month): 1 ()
    Pages: 123-132

    in new window

    Handle: RePEc:eee:ejores:v:223:y:2012:i:1:p:123-132
    DOI: 10.1016/j.ejor.2012.06.031
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Avishai Mandelbaum & Martin I. Reiman, 1998. "On Pooling in Queueing Networks," Management Science, INFORMS, vol. 44(7), pages 971-981, July.
    2. Maertens, Tom & Walraevens, Joris & Bruneel, Herwig, 2007. "A modified HOL priority scheduling discipline: Performance analysis," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1168-1185, August.
    3. Laevens, Koenraad & Bruneel, Herwig, 1995. "Delay analysis for discrete-time queueing systems with multiple randomly interrupted servers," European Journal of Operational Research, Elsevier, vol. 85(1), pages 161-177, August.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:1:p:123-132. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.