IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v216y2012i1p113-126.html
   My bibliography  Save this article

Solving the two-echelon location routing problem by a GRASP reinforced by a learning process and path relinking

Author

Listed:
  • Nguyen, Viet-Phuong
  • Prins, Christian
  • Prodhon, Caroline

Abstract

The two-echelon location-routing problem (LRP-2E) arises from recent transportation applications like city logistics. In this problem, still seldom studied, first-level trips serve from a main depot a set of satellite depots, which must be located, while second-level trips visit customers from these satellites. After a literature review on the LRP-2E, we present four constructive heuristics and a hybrid metaheuristic: A greedy randomized adaptive search procedure (GRASP) complemented by a learning process (LP) and path relinking (PR). The GRASP and learning process involve three greedy randomized heuristics to generate trial solutions and two variable neighbourhood descent (VND) procedures to improve them. The optional path relinking adds a memory mechanism by combining intensification strategy and post-optimization. Numerical tests show that the GRASP with LP and PR outperforms the simple heuristics and an adaptation of a matheuristic initially published for a particular case, the capacitated location-routing problem (CLRP). Additional tests on the CLRP indicate that the best GRASP competes with the best metaheuristics published.

Suggested Citation

  • Nguyen, Viet-Phuong & Prins, Christian & Prodhon, Caroline, 2012. "Solving the two-echelon location routing problem by a GRASP reinforced by a learning process and path relinking," European Journal of Operational Research, Elsevier, vol. 216(1), pages 113-126.
  • Handle: RePEc:eee:ejores:v:216:y:2012:i:1:p:113-126
    DOI: 10.1016/j.ejor.2011.07.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171100662X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.07.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ro, Hyung-bong & Tcha, Dong-wan, 1984. "A branch and bound algorithm for the two-level uncapacitated facility location problem with some side constraints," European Journal of Operational Research, Elsevier, vol. 18(3), pages 349-358, December.
    2. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(1), pages 193-194, February.
    3. Jacobsen, S. K. & Madsen, O. B. G., 1980. "A comparative study of heuristics for a two-level routing-location problem," European Journal of Operational Research, Elsevier, vol. 5(6), pages 378-387, December.
    4. Tragantalerngsak, Suda & Holt, John & Ronnqvist, Mikael, 1997. "Lagrangian heuristics for the two-echelon, single-source, capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 102(3), pages 611-625, November.
    5. Angelelli, Enrico & Grazia Speranza, Maria, 2002. "The periodic vehicle routing problem with intermediate facilities," European Journal of Operational Research, Elsevier, vol. 137(2), pages 233-247, March.
    6. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(2), pages 541-545, April.
    7. Crevier, Benoit & Cordeau, Jean-Francois & Laporte, Gilbert, 2007. "The multi-depot vehicle routing problem with inter-depot routes," European Journal of Operational Research, Elsevier, vol. 176(2), pages 756-773, January.
    8. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    9. Jordan, William C. & Burns, Lawrence D., 1984. "Truck backhauling on two terminal networks," Transportation Research Part B: Methodological, Elsevier, vol. 18(6), pages 487-503, December.
    10. Christian Prins & Caroline Prodhon & Angel Ruiz & Patrick Soriano & Roberto Wolfler Calvo, 2007. "Solving the Capacitated Location-Routing Problem by a Cooperative Lagrangean Relaxation-Granular Tabu Search Heuristic," Transportation Science, INFORMS, vol. 41(4), pages 470-483, November.
    11. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(4), pages 1007-1017, August.
    12. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    13. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1461-1465, December.
    14. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1273-1289, October.
    15. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(3), pages 819-821, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rieck, Julia & Ehrenberg, Carsten & Zimmermann, Jürgen, 2014. "Many-to-many location-routing with inter-hub transport and multi-commodity pickup-and-delivery," European Journal of Operational Research, Elsevier, vol. 236(3), pages 863-878.
    2. Stenger, Andreas & Schneider, Michael & Schwind, Michael & Vigo, Daniele, 2012. "Location routing for small package shippers with subcontracting options," International Journal of Production Economics, Elsevier, vol. 140(2), pages 702-712.
    3. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    4. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    5. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2012. "The location-routing problem with simultaneous pickup and delivery: Formulations and a heuristic approach," Omega, Elsevier, vol. 40(4), pages 465-477.
    6. Mahdi Bashiri & Zeinab Rasoulinejad & Ehsan Fallahzade, 2016. "A new approach on auxiliary vehicle assignment in capacitated location routing problem," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(4), pages 886-902, March.
    7. Ahmadi, Morteza & Seifi, Abbas & Tootooni, Behnam, 2015. "A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: A case study on San Francisco district," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 145-163.
    8. Tu, Wei & Fang, Zhixiang & Li, Qingquan & Shaw, Shih-Lung & Chen, BiYu, 2014. "A bi-level Voronoi diagram-based metaheuristic for a large-scale multi-depot vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 84-97.
    9. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    10. Roberto Baldacci & Aristide Mingozzi & Roberto Wolfler Calvo, 2011. "An Exact Method for the Capacitated Location-Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1284-1296, October.
    11. Drexl, M. & Schneider, M., 2014. "A Survey of the Standard Location-Routing Problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65940, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. Linjie Chen & Thibaud Monteiro & Tao Wang & Eric Marcon, 2019. "Design of shared unit-dose drug distribution network using multi-level particle swarm optimization," Health Care Management Science, Springer, vol. 22(2), pages 304-317, June.
    13. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    14. Gao, Shangce & Wang, Yirui & Cheng, Jiujun & Inazumi, Yasuhiro & Tang, Zheng, 2016. "Ant colony optimization with clustering for solving the dynamic location routing problem," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 149-173.
    15. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2021. "An evaluation of three DoE-guided meta-heuristic-based solution methods for a three-echelon sustainable distribution network," Annals of Operations Research, Springer, vol. 296(1), pages 421-469, January.
    16. Michael Schneider & Michael Drexl, 2017. "A survey of the standard location-routing problem," Annals of Operations Research, Springer, vol. 259(1), pages 389-414, December.
    17. Günther Zäpfel & Michael Bögl, 2016. "An adaptive structure of a hub-and-spoke system with direct and depot shipments in the case of volatile demand over time," Journal of Business Economics, Springer, vol. 86(7), pages 697-721, October.
    18. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "The fleet size and mix location-routing problem with time windows: Formulations and a heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 248(1), pages 33-51.
    19. Nasrin Asgari & Mohsen Rajabi & Masoumeh Jamshidi & Maryam Khatami & Reza Zanjirani Farahani, 2017. "A memetic algorithm for a multi-objective obnoxious waste location-routing problem: a case study," Annals of Operations Research, Springer, vol. 250(2), pages 279-308, March.
    20. Zhang, Ying & Qi, Mingyao & Lin, Wei-Hua & Miao, Lixin, 2015. "A metaheuristic approach to the reliable location routing problem under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 90-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:216:y:2012:i:1:p:113-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.